ELECTRIC POTENTIAL

23.1.

23.2.

23.3.

IDENTIFY: Apply Eq.(23.2) to calculate the work. The electric potential energy of a pair of point charges is given
by Eq.(23.9).
SET Up: Let the initial position of ¢, be point a and the final position be point b, as shown in Figure 23.1.

y
b
O
r,=0.150 m
)
0250 m r, =/(0.250 m)* +(0.250 m)?
a r,=0.3536 m
@ X
a0 Ta 4

0.250 m

Figure 23.1

EXECUTE: W, _,=U,-U,
-6 _ —6
; =LM=(8.988><109 N-m2/C2)(+2'40X10 C)(—4.30x10™° C)
47[50 r, 0.150 m
U,=-0.618417
6 _ —6
U, =LM= (8.988x10° N-m*/C?) (+2.40%x10™° C)(—4.30x10™° C)
dre, 1, 0.3536 m

U,=-0.26231

W,_,=U,—U,=—06184 J—(-0.2623 )= —0.356 ]

EVALUATE: The attractive force on g, is toward the origin, so it does negative work on ¢, when g, moves to

larger r.
IDENTIFY: Apply W _,, =U_ -U,.

SETUp: U, =+5.4x10" J. Solve for U,.
EXECUTE: W, ,=-19x10°J=U,-U,. U,=U,-W

', =1.9%x107° J—(=5.4x10°® 1)=7.3x107® J.
EVALUATE: When the electric force does negative work the electrical potential energy increases.

IDENTIFY: The work needed to assemble the nucleus is the sum of the electrical potential energies of the protons
in the nucleus, relative to infinity.

SETUp: The total potential energy is the scalar sum of all the individual potential energies, where each potential

energy is U =(1/4r¢,)(qq,/ r).Each charge is e and the charges are equidistant from each other, so the total

. . 1 62 ez 62 3@2
potential energy is U =——| —+—+— |= .
dre,\ r r r ) Amer

EXECUTE: Adding the potential energies gives
_ 3¢’ 3(1.60x107 ©)7(9.00x10° N-m*/C?)
Are,r 2.00x107™° m

EVALUATE: This is a small amount of energy on a macroscopic scale, but on the scale of atoms, 2 MeV is quite a
lot of energy.

=3.46x107° J=2.16 MeV

231
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234.

23.5.

IDENTIFY: The work required is the change in electrical potential energy. The protons gain speed after being
released because their potential energy is converted into Kinetic energy.

(a) SET Up: Using the potential energy of a pair of point charges relative to infinity, U =(1/47F,)(qq,/r), we
have W =AU =U, -U, =L[é~é}
dre\r,
EXECUTE: Factoring out the ¢” and substituting numbers gives
1 1
30010 m  2.00x10™° m

(b) SETUP: The protons have equal momentum, and since they have equal masses, they will have equal speeds

W =(9.00x10°N - m*/C*)(1.60x10™ C)Z[ ]: 7.68x107 1

and hence equal kinetic energy. AU =K, +K, =2K = 2[% mvzj =m’.

—14
EXECUTE: Solving for v gives v=, Hﬂ = M =6.78 x 10° m/s
m 1.67x107 kg :
EVALUATE: The potential energy may seem small (compared to macroscopic energies), but it is enough to give
each proton a speed of nearly 7 million m/s.
(a) IDENTIFY: Use conservation of energy:

Ku + Ua + I/chther = Kb + Ub
U for the pair of point charges is given by Eq.(23.9).
SET UP:
v, = 22.0mfs
wet be wh 0.800 m fr
s~ Let point a be where g, is 0.800 m from
an2 b _1e O ' g, and point b be where g, is 0.400 m
7, = 0.800m from g, as shown in Figure 23.5a.
r, = 0.400 m
Figure 23.5a

. 1
EXECUTE: Only the electric force does work, so W, =0 and U = 4—%
e, 1

K, =1mv} =1(1.50x10" kg)(22.0 m/s)* =0.3630 J
_ —6 _ —6
1 49 _ (g 988 10° N-mz/Cz)( 2.80x10™ C)(=7.80x10° C) _

= +0.2454 ]
4re, 1, 0.800 m

a
=102
K, =5mv,

_ —5 _ —5
U - |08 _ g oggx10° N.mc?) C280X10° O)(=780x107 €) _

= +0.4907 ]
4re, 1 0.400 m

The conservation of energy equation then gives X, =K, +(U,-U,)

Lmy; =+0.3630 J+(0.2454 J-0.4907 J)=0.1177 ]

oo 201077 ol
* V1.50x10% kg

EVALUATE: The potential energy increases when the two positively charged spheres get closer together, so the
kinetic energy and speed decrease.

(b) IDENTIFY: Let point ¢ be where g, has its speed momentarily reduced to zero. Apply conservation of energy to
pointsaandc: K, +U, + W, . =K +U,.
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23.6.

23.7.

SETUP: Points a and ¢ are shown in Figure 23.5b.

v, = 22.0mfs
—_ v. =0
«Qa o o O q EXECUIE: K, =+0.36307 (from part (2))
U, =+0.2454 (from part (a))
r, = 0.800m
re=7?
Figure 23.5b

K_ =0 (at distance of closest approach the speed is zero)

=1 99
© o dre v,
Thus conservation of energy K +U_ =U, gives %% =+0.3630 J +0.2454 J =0.6084 J
e, T,
L —6 _ —6
L 9% _ (gogaxi0? N.myc?) 200" OCTINXN0T O 595 .

47e, 0.6084 J +0.6084 J
EVALUATE: U — < as r =0 so g, will stop no matter what its initial speed is.
IDENTIFY: Apply U = k9% 244 solve for r.

r
SETUP: ¢,=-72%10°C, q,=+2.3%10° C
. 9 CmZ 2N . 1 —6 . 1 —6

EXECUTE: 7= kq.q, _ (8.99x10° N-m*/C*)(-=7.20x10™ C)(+2.30x10™ C) —0372m

U —0.40017
EVALUATE: The potential energy U is a scalar and can take positive and negative values.
(a) IDENTIFY and SETUP: U is given by Eq.(23.9).
Execute: U=—1 99

4ermy r

. N 1.20x10°
U = (8.988x10° N-m2/cy) SFH00X107 OGL20XI07 C) _ 5 199

0.250 m

EVALUATE: The two charges are both of the same sign so their electric potential energy is positive.
(b) IDENTIFY: Use conservation of energy: K +U_ +W, =K, +U,
SETUP: Let point a be where ¢ is released and point b be at its final position, as shown in Figure 23.7.

v, =0 vp =1
‘4 a b EXECUTE: K, =0 (released from rest)
—@ £y X
0 q U,=+0.198] (from part (a))
S — 1 5
T K, =;mv,
Tp
Figure 23.7
1 aQ

Only the electric force does work, so W, =0 and U = .
4re, r

(i) r, =0.500 m

U =+0.0992 ]

-5 s
_ 1 £=(8.988x109 N~m2/C2)(+4'6OXIO C)(+1.20x107° C)
4re, 1 0.500 m

b

Then K, +U,+W,, =K, +U, gives K, =U,~U, and {mv; =U,-U, and

_ \/Z(Ua -U,) _ \/2(+0.198 1-0.0992 )

=26.6 m/s.

b

2.80x10™ kg
(ii) r,=5.00 m 7, is now ten times larger than in (i) so U, is ten times smaller: U, =+0.0992 J/10=+0.00992 J.

. FUH—U,,) _[2(+0.198 T -0.00992 J)
b m 2.80x10™ kg

m

=36.7 m/s.
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23.8.

23.9.

23.10.

(iii) , =50.0 m
¥, is now ten times larger than in (ii) so U, is ten times smaller:

U, =+0.00992 J/10 =+0.000992 J.

=375 m/s.

= \/2(Ua -U,) [2(+0.198 J-0.000992 J)
’ m V'  2.80x107 kg
EvALUATE: The force between the two charges is repulsive and provides an acceleration to g. This causes the

speed of g to increase as it moves away from Q.
IDENTIFY: Call the three charges 1,2 and 3. U =U,, +U,; + Uy,

SETUp: U, =U,, =U,, because the charges are equal and each pair of charges has the same separation, 0.500 m.
3k 3k(1.2x10° C)
0.500 m 0.500 m

EVALUATE: When the three charges are brought in from infinity to the corners of the triangle, the repulsive
electrical forces between each pair of charges do negative work and electrical potential energy is stored.

IDENTIFY: U= k[—qlqz + 9% +_q2q3J

N» A3 s

EXEcutE: U= =0.078 J.

SET UP: Inpart (a), r, =0.200 m, r,; =0.100 m and #, =0.100 m. In part (b) let particle 3 have coordinate x, so
r,=0200m, r; =xand r, =0.200 —x.

(4.00nC)(-3.00nC) _ (4.00nC)(2.00nC) | (-3.00 nC)(2.00 nC)
(0.200 m) (0.100 m) (0.100 m)

EXECUTE: (a) U =k( ]=—3.60><10'7 J

(b)YIf U =0, then 0= k{% +%+M} Solving for x we find:
na X Fp—Xx

0=-60+ 8__6

x 02-x

value between the two charges.

EVALUATE: U, is positive and both U,,and U,, are negative. If U =0, then |U,,| =|U,| +|U,,|. For

x=0.074m, U, =49.7x107 J, U,, =—4.3x107 Jand U,, =-5.4x107" J. Itis true that U =0 at this x.
IDENTIFY: The work done on the alpha particle is equal to the difference in its potential energy when it is moved
from the midpoint of the square to the midpoint of one of the sides.

SETUp:  We apply the formula #,_, =U, —U,. In this case, a is the center of the square and b is the midpoint of

U

side*

= 60x* —26x+1.6=0= x=0.074 m, 0.360 m. Therefore, x =0.074 m since it is the only

—b

one of the sides. Therefore W =

center —side center
There are 4 electrons, so the potential energy at the center of the square is 4 times the potential energy of a single
alpha-electron pair. At the center of the square, the alpha particle is a distance r; = /50 nm from each electron. At
the midpoint of the side, the alpha is a distance , = 5.00 nm from the two nearest electrons and a distance r; =
V125 nm from the two most distant electrons. Using the formula for the potential energy (relative to infinity) of
two point charges, U =(1/47z¢,)(qq,/ r), the total work is

W sste =Unons ~Uge = 4——dede [ 5 1 Gafle 5 1 dod.
center —side center side 47[60 fi 47[60 r2 47[60 7‘3

Substituting g, = e and g, = 2e and simplifying gives

I/Vcenter—nide =_4ez—1’ 2_ l_*_l
dre,|n \n 7

EXECUTE: Substituting the numerical values into the equation for the work gives

W =—4(160x10™" c)2 (9.00x10° N-m2/C?) =6.08x1072' J

2 1 1
- +
J50 nm [5.00 nm 125 nm]

EvALUATE: Since the work is positive, the system has more potential energy with the alpha particle at the center
of the square than it does with it at the midpoint of a side.
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23.11.

23.12.

23.13.

23.14.

IDENTIFY: Apply Eq.(23.2). The net work to bring the charges in from infinity is equal to the change in potential
energy. The total potential energy is the sum of the potential energies of each pair of charges, calculated from
Eq.(23.9).

SETUP: Let 1 be where all the charges are infinitely far apart. Let 2 be where the charges are at the corners of the
triangle, as shown in Figure 23.11.

bad

d Let g, be the third, unknown charge.

dc
a
q d ¢
Figure 23.11

EXECUTE: W =-AU =—(U,-U))
U =0

1
[
U2 = Uab +Uac +ch = (q + 2qq5)
4re,d
Want W =0,s0 W=—(U,-U,) gives 0=-U,

1 2
0=——(g"+2
ired 9" +244.)
g’ +29q,=0 and g, =—q/2.
EVALUATE: The potential energy for the two charges ¢ is positive and for each g with g, it is negative. There are
two of the g, g. terms so must have g, <g.

IDENTIFY: Use conservation of energy U, + K, =U, + K, to find the distance of closest approach r,. The

maximum force is at the distance of closest approach, F = k@.
rb

SETUp: K, =0. Initially the two protons are far apart, so U, =0. A proton has mass 1.67x10™ kg and charge
g=+e=+1.60x10"" C.

2
EXECUTE: K, =U,. 2¢mv?)=k292 my? =k and

rb rb
. ke’ (8.99x10° N-m*/C*)(1.60x10™"” C)’ 138x10°% m
bomy? (1.67x107 kg)(1.00x10° my/s)? ' '
2 . 0—19 2
F=k5=(8.99x10° N-mZ/CZ)LwM—_BC);: 0.012N.
r (1.38x107™2 C)

EVALUATE: The acceleration a = F/m of each proton produced by this force is extremely large.

IDENTIFY:  E points from high potential to low potential. Woon _ V,-V,.
9

SETUP: The force on a positive test charge is in the direction of E.
EXECUTE: V decreases in the eastward direction. A is east of B, so V, >V,. Cis east of A, so V, <V,. The force
on a positive test charge is east, so no work is done on it by the electric force when it moves due south (the force and
displacement are perpendicular), and V,, =V,.
EVALUATE: The electric potential is constant in a direction perpendicular to the electric field.

W, . k
IDENTIFY: —2=22=V -V,. For a point charge, V = 4

9o r

SETUP: Each vacant corner is the same distance, 0.200 m, from each point charge.

EXECUTE: Taking the origin at the center of the square, the symmetry means that the potential is the same at the
two corners not occupied by the +5.00 4C charges. This means that no net work is done is moving from one corner

to the other.
EVALUATE: If the charge g,moves along a diagonal of the square, the electrical force does positive work for part
of the path and negative work for another part of the path, but the net work done is zero.
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23.15. IDENTIFY and SET UP: Apply conservation of energy to points A and B.
Execure: K,+U,=K,+U,
U=4qV, so K,+qV,=K;+qV,
K, =K, +q(V,—V,)=0.00250 J+(~5.00x10™° C)(200 V —800 V) =0.00550J
vy = 2K, im =742 m/s

EVALUATE: It is faster at B, a negative charge gains speed when it moves to higher potential.

23.16. IDENTIFY: The work-energy theorem says W, =K, — K . W _ V,~V,.

q
SET UpP: Point a is the starting and point b is the ending point. Since the field is uniform,
W,_,, = Fscosg =E|g|scos¢. The field is to the left so the force on the positive charge is to the left. The particle

moves to the left so ¢ =0° and the work W

a—b

EXECUTE: (a) W,, =K, — K, =1.50x10"° J-0=1.50x10"°J

1.50x107J
(b) Va _Vb — vva—)b = X =
4.20x10”° C

is positive.

=357 V. Point a is at higher potential than point b.

W V-V 357V
= E =_a2b _ e b =
(c) E|‘Z|S W, 80 |q|s s 6.00x107 m

EVALUATE: A positive charge gains kinetic energy when it moves to lower potential; V, <V,.

=5.95x10° V/m.

23.17. IDENTIFY: Apply the equation that precedes Eq.(23.17): W, = q'fE -dl.

SETUP: Use coordinates where +y is upward and +x is to the right. Then E = Ej with E=4.00x10* N/C.
(a) The path is sketched in Figure 23.17a.

dl = dd
X

J—’—:
af

b
Figure 23.17a

Execure:  E-dl =(E)-(dd)=0 so W,_, =4 [ E-dl =0.

EVALUATE: The electric force on the positive charge is upward (in the direction of the electric field) and does no
work for a horizontal displacement of the charge.
(b) SEr UP: The path is sketched in Figure 23.17b.

y

dl = dyj

~

X
a

Figure 23.17b
EXECUTE: E -dI =(E))-(dy) = Edy

W,,=q [E-dl =qE[ dy=4E(y,-,)
¥, — ¥, =+0.670 m, positive since the displacement is upward and we have taken +y to be upward.

W,

a—b

=¢'E(y, —y,)=(+28.0x107 C)(4.00x10* N/C}+0.670 m) =+7.50x107 J.
b a

EVALUATE: The electric force on the positive charge is upward so it does positive work for an upward
displacement of the charge.
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23.18.

23.19.

23.20.

(¢) SETUP: The path is sketched in Figure 23.17c.

N

Figure 23.17¢

y

¥, =0
¥, =—rsin@ =—(2.60 m)sin45°=-1.838 m

The vertical component of the 2.60 m
displacement is 1.838 m downward.

EXECUTE: dl =dxd +dy (The displacement has both horizontal and vertical components.)

E.dl = (E}) . (dxf + dyf') = Edy (Only the vertical component of the displacement contributes to the work.)
Wes = Q'fE’ dl =qE fdy =qE®y,~Y,)

W,

a—b

=q'E(y,~y,) = (+28.0x107°C)(4.00x10* N/C)(—1.838 m) =-2.06x107 J.

EVALUATE: The electric force on the positive charge is upward so it does negative work for a displacement of the
charge that has a downward component.
IDENTIFY: Apply K +U, =K, +U,.

SETUP: Let g, =+3.00 nC and g, =+2.00 nC. Atpointa, r, =r,,=0.250 m . At point b, r,, =0.100 m and

r,, =0.400 m . The electron has g=—eand m,=9.11x10” kg . K, =0 since the electron is released from rest.

a

_keq, ke, __keq, keg, 1

EXECUTE: my, .
B e T T
00x10” 00x107
E =K, +U,=k(-1.60x10" ¢)| 00107 C) | QOOI07C))__, g1y
0250 m 0250m
-9 -9
E,=K,+U, =k(-1.60x107 ¢ G0 ©)  (200x107C) 1 2 5040107 54 Lt
0.100m 0400m ) 2 2

2
Setting E, = E, gives v, =\/ (5.04x1077 J —2.88% 1077 I) =6.89 x 10° m/s.

9.11x10™ kg
EVALUATE: V =V, _+V, =180V. V, =V, +V,, =315V. V, >V . The negatively charged electron gains kinetic
energy when it moves to higher potential.
IDENTIFY and SETUP:  For a point charge V = kq . Solve for r.
r
kq (8.99x10° N-m?*/C*)(2.50x10™" C)

EXECUTE: (a) r=—- =2.50%x10" m=2.50 mm
1% 9200V

Vi 9.0V
(b) Vr =kq =constant so V,, =V,r,. r, =1, LVL—J =(2.50 mm)[%.g V] =7.50 mm .
EVALUATE: The potential of a positive charge is positive and decreases as the distance from the point charge
increases.
IDENTIFY: The total potential is the scalar sum of the individual potentials, but the net electric field is the vector
sum of the two fields.
SETUP: The net potential can only be zero if one charge is positive and the other is negative, since it is a scalar.
The electric field can only be zero if the two fields point in opposite directions.
EXECUTE: (a) (i) Since both charges have the same sign, there are no points for which the potential is zero.
(ii) The two electric fields are in opposite directions only between the two charges, and midway between them the
fields have equal magnitudes. So E = 0 midway between the charges, but V is never zero.
(b) (1) The two potentials have equal magnitude but opposite sign midway between the charges, so V=0 midway
between the charges, but E # 0 there since the fields point in the same direction.
(ii) Between the two charges, the fields point in the same direction, so E cannot be zero there. In the other two
regions, the field due to the nearer charge is always greater than the field due to the more distant charge, so they
cannot cancel. Hence E is not zero anywhere.
EVALUATE: It does not follow that the electric field is zero where the potential is zero, or that the potential is zeto
where the electric field is zero.
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23.21. IDENTIFY: V=L %

dre, T r;
SETUP: The locations of the changes and points A and B are sketched in Figure 23.21.
B
0.050m __ 0.050m
q1 = +2.40nC A g = —6.50nC
Figure 23.21
1
EXECUTE: (a) V, = —[i + ﬁj
T Taz

+240x107° C + -6.50x107° C
0.050 m 0.050 m

V, =(8.988x10° N - mz/Cz){ ]:—737 v

) V, =_1_[i+ﬁ]
4re, \ 1,

. Tp

+2.40%x107° C . —6.50x10"° C
0.080 m 0.060 m

V, =(8.988x10° N m2/C2)£ ] =-704V

(c) IDENTIFY and SET UP:  Use Eq.(23.13) and the results of parts (a) and (b) to calculate W.
ExEcutE: W, ,= q'(VB -V,)=(2.50x 107 C)(=704 V—(=737 V)) =+8.2x107 J

EvALUATE: The electric force does positive work on the positive charge when it moves from higher potential
(point B) to lower potential (point A).

23.22. IDENTIFY: For a point charge, V = k_q The total potential at any point is the algebraic sum of the potentials of the
r

two charges.
SETUP: (a) The positions of the two charges are shown in Figure 23.22a. r=+a’ +x* .

Figure 23.22a

EXECUTE: (b) V, = ZLE

4re, a

I g ! q
c) V(x)=2 =2
( ( 4re, r 4ﬂ60\/;2+x2
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23.23.

23.24,

(d) The graph of V versus x is sketched in Figure 23.22b.
\%4

1.20
| N
0.80 /! AN
; v ~N
0.40 // \\‘
- // \\\—
! |
0.00 i l . x
—4.00 —3.00 —2.00 —1.00 0.00 1.00 2.00 3.00 4.00
Figure 23.22b

EVALUATE: (e) When x>>a, V= %ﬁ, just like a point charge of charge +24. At distances from the charges
e, X

much greater than their separation, the two charges act like a single point charge.
IDENTIFY: For a point charge, V = kg . The total potential at any point is the algebraic sum of the potentials of
r

the two charges.
SETUP: (a) The positions of the two charges are shown in Figure 23.23.

EXECUTE: (b) V=E+k(“‘1)=0'
r r

(c) The potential along the x-axis is always zero, so a graph would be flat.

(d) If the two charges are interchanged, then the results of (b) and (c) still hold. The potential is zero.

EVALUATE: The potential is zero at any point on the x-axis because any point on the x-axis is equidistant from the
two charges.

Figure 23.23

IDENTIFY: For a point charge, V = kq . The total potential at any point is the algebraic sum of the potentials of the
r

two charges.
SET UP: Consider the distances from the point on the y-axis to each charge for the three regions —a<y<gq

(between the two charges), y > a (above both charges) and y < —g (below both charges).

EXECUTE: (a) |yl<a:V = kg __kq — quyz_ kg kq =—22kqa_
(a+y) (a-y) y -a (a+y) y-a vy -
y<—a:V= —kg___ kg = %kqaz.
(a+y) (=y+a) y —a

y>a:V=

ly—al ly+al
(b) The graph of V versus y is sketched in Figure 23.24.
~2kqa —2kqa
yz & yz '
(d) If the charges are interchanged, then the potential is of the opposite sign.

A general expression valid for any yis V =k [ 9 9 J )

© y>>a:V=
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EVALUATE: V =0 at y=0. V — +oo as the positive charge is approached and V — —oo as the negative charge is

approached.
vV

Figure 23.24

23.25. IpENTIFY: For a point charge, V = E{I_ The total potential at any point is the algebraic sum of the potentials of the
r

two charges.
SETUP: (a) The positions of the two charges are shown in Figure 23.25a.
y
X
a
Figure 23.25a
- k -

) x>a:V=E— 2kq = kq(x+a). 0<x<a:V=—k£— 2k = kq(x a)'

X x—a x(x—a) x a-x x(x—a)

—kgq + 2kg _ kq(x+a)
x x-a x(x-a)

(c) The potential is zero at x=—a and a/3.

(d) The graph of V versus x is sketched in Figure 23.25b‘.]

x<0:V=

o . 9 __2q
. = k _— .
A general expression valid for any y is V [I 1 Tx-a J

L xla

Figure 23.25b

- —k L . .
5 X = _q’ which is the same as the potential of a point charge —g. Far from
x

EVALUATE: (e) For x>>a:V =
X

the two charges they appear to be a point charge with a charge that is the algebraic sum of their two charges.
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23.26. IDENTIFY: For a point charge, V = Lo} . The total potential at any point is the algebraic sum of the potentials of the
r

two charges.
SETUP: The distance of a point with coordinate y from the positive charge is ] yl and the distance from the

negative charge is r =+/a’* +y* .
EXECUTE: (a) voXd _2kq¢_, L 2 |
Iyl r [yl ’a2+y2
2 2
a+y 2_ 2 a
(b) V =0, when y* = =3y'=d’>y=t—.
4 V3

(c) The graph of V versus y is sketched in Figure 23.26. V — oo as the positive charge at the origin is approached.

EVALUATE: (d) y>>a:V= kq(l - E] =— ]—qi, which is the potential of a point charge —q . Far from the two
y vy y

charges they appear to be a point charge with a charge that is the algebraic sum of their two charges.
1%

[1V
[

[\
/TN

0.00 2 N

2o 1S Tioo 050 000 s 1w 1so 200

Figure 23.26
23.27. IDENTIFY: K +4V =K, +4qV,.
SETUP: Let point a be at the cathode and let point b be at the anode. K, =0. V, =V, =295 V . An electron has
g=—eand m=9.11x10"" kg .

EXECUTE: K, =q(V,-V,)=—(1.60x10™ C)(—295 V) =4.72x10"" ] . K, =%mvb2 , SO

—-17
v, = &L&D:LOIXIW m/s.
9.11x10™ kg

b
EVALUATE: The negatively charged electron gains kinetic energy when it moves to higher potential.
Klg]

k
— and v=X4
.

’
SETUP: The electric field is directed toward a negative charge and away from a positive charge.

2
EXECUTE: (a) V >0 50 0. L= kq/rzz[k—q Ty p= 38V 6415m.
E klg/r* \r kg 12.0 V/m

23.28. IDENTIFY: For a point charge, E =

b) = V. _ (0415 m)(4.98 V)
1 T 8.99x10° N-m?/C?
(¢) g>0, so the electric field is directed away from the charge.

=2.30x107° C

EVALUATE: The ratio of Vto E due to a point charge increases as the distance r from the charge increases, because
E falls off as 1/7* and V falls off as 1/r.

23.29. (a) IDENTIFY and SET UP: The direction of E is always from high potential to low potential so point b is at
higher potential.

(b) Apply Eq.(23.17) to relate V, -V, to E.
EXECUTE: V, -V, = —fE" -dl =fde =E(x,—x,).

V,-V, 4240V

E= =
x,—x, 0.90m-0.60 m

=800 V/m
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© W,,,=q(¥-V)=(-0.200x10"° C)(+240 V)=-4.80x107" J.
EVALUATE: The electric force does negative work on a negative charge when the negative charge moves from
high potential (point ») to low potential (point a).

23.30. IDENTIFY: For a point charge, V= L] . The total potential at any point is the algebraic sum of the potentials of the
r

two charges. For a point charge, E = ﬁ(jl . The net electric field is the vector sum of the electric fields of the two
r

charges.

SETUP: E produced by a point charge is directed away from the point charge if it is positive and toward the
charge if it is negative.

EXECUTE: (a) V=1V, +V,>0, so ¥V is zero nowhere except for infinitely far from the charges. The fields can

cancel only between the charges, because only there are the fields of the two charges in opposite directions. Consider a

point a distance x from Q and d —x from 2(Q, as shown in Figure 23.30a. E,=E,, > ﬁg— = ((];(ZQ;Q —(d-x)"=2x".
x -x

x= d . The other root, x = d , does not lie between the charges.
142 1-2

(b) Vcan be zero in 2 places, 4 and B, as shown in Figure 23.30b. Point 4 is a distance x from —Q and d —x from
2Q. Bis a distance y from —Q and d+ y from 2. At 4: u+@20—>x=d/3.
x -x

Atg: HZO k2O,
y d+y

The two electric fields are in opposite directions to the left of —Q or to the right of 2Q in Figure 23.30c. But for the

magnitudes to be equal, the point must be closer to the charge with smaller magnitude of charge. This can be the

K_k2Q o d

case only in the region to the leftof ~Q . E_ =E, , gives —= and x=——.
Y = Q- Eo=Fys X (d+x) J2-1

EVALUATE: (d) E and V are not zero at the same places. E is a vector and ¥ is a scalar. E is proportional to 1/+2

and ¥ is proportional to 1/r . E is related to the force on a test charge and A Vis related to the work done on a test
charge when it moves from one point to another.

—»y=d.

Q 2Q -Q 20 -Q 2Q
< d—>e B e A e o<—d—>e
x y x x
@ ®) ©
Figure 23.30

23.31. IDENTIFY and SET UP: Apply conservation of energy, Eq.(23.3). Use Eq.(23.12) to express U in terms of V.
(a) EXecUtE: K, +gV¥=K,+qV]

gV -Y¥)=K,-K,; g=-1.602x10"" C
K =imy! =4.099x107"° J; K,=1my;=2915x10""]
11/_ I{:MZ—ISG Vv

q

EVALUATE: The electron gains kinetic energy when it moves to higher potential.
(b) EXECUTE: Now K, =2915x10"7 J, K, =0
V-V = LS SURRTY RV
q
EVALUATE: The electron loses kinetic energy when it moves to lower potential.
23.32. IpENTIFY and SET UP:  Expressions for the electric potential inside and outside a solid conducting sphere are
derived in Example 23.8.

kg k(3.50x10°C) _

EXECUTE: (a) This is outside the sphere,so V=—=—"———=-=656V.
r 0.480 m
-9
(b) This is at the surface of the sphere, so V = w =131V,
0.240 m

(c) This is inside the sphere. The potential has the same value as at the surface, 131 V.
EVALUATE: All points of a conductor are at the same potential.
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23.33.

23.34.

23.35.

(a) IDENTIFY and SETUP: The electric field on the ring’s axis is calculated in Example 21.10. The force on the
electron exerted by this field is given by Eq.(21.3).

EXECUTE: When the electron is on either side of the center of the ring, the ring exerts an attractive force directed
toward the center of the ring. This restoring force produces oscillatory motion of the electron along the axis of the
ring, with amplitude 30.0 cm. The force on the electron is not of the form F =—kx so the oscillatory motion is not
simple harmonic motion.

(b) IDENTIFY: Apply conservation of energy to the motion of the electron.

SETUP: K_+U, =K, +U, witha at the initial position of the electron and b at the center of the ring. From

1 Y
4me, x> +R?

EXECUTE: x,=30.0 cm, x, =0.

Example 23.11, V = where R is the radius of the ring.

K, =0 (released from rest), K, = 1m’

Thus imv* =U, -U,

And U=gV=—eV so v= }E(V”_—K)
m

-9
Z=LL=(8988X109 NmZ /Cz) 240)(10 C
Aze \[x} + R J(0.300 m)? +(0.150 m)®
V=643V
-9
y=t @ _gossx10’ N-m/ )20 C ey
Ame, \|x; + R 0.150 m

=1.67x10" m/s

e [2604-¥) _\/2(1.602x10“9 C)(1438 V~643 V)
m

9.109x10 kg
EVALUATE: The positively charged ring attracts the negatively charged electron and accelerates it. The electron

has its maximum speed at this point. When the electron moves past the center of the ring the force on it is opposite
to its motion and it slows down.

IDENTIFY: Example 23.10 shows that for a line of charge, V-V = ziln(rb/ ¥,) . Apply conservation of energy
7

to the motion of the proton.

SETUP: Let point a be 18.0 cm from the line and let point 4 be at the distance of closest approach, where K, =0.

EXECUTE: (a) K, =1mv’ =1(1.67x1077 kg)1.50x10° m/s)’ =1.88x107' J.

_Kk,-K, -188x10™J
q 1.60x10™° C

276,(~0.01175 V)J 2776,(0.01175 V)
= rexp| ZZ&OOT VI _ 180 m)exp| - 2ZF0t0OLD V)
O p[ 2 (0180 mjexp| == % Cm

EVALUATE: The potential increases with decreasing distance from the line of charge. As the positively charged
proton approaches the line of charge it gains electrical potential energy and loses kinetic energy.

IDENTIFY: The voltmeter measures the potential difference between the two points. We must relate this quantity to
the linear charge density on the wire.

2re,

M K, +qV,=K,+qV,. V- ¢ P

=-0.01175V . In(r,/7,) :[ J(—0.01175 V).

J:O.lSSm.

SETUP: For a very long (infinite) wire, the potential difference between two points is AV= El—ln(rb Ir,).
ey
EXECUTE: (a) Solving for A gives
_(AV2re, 575V

=9.49x 10® C/m
In(r,/r,)

2.50 cm

(b) The meter will read less than 575 V because the electric field is weaker over this 1.00-cm distance than it was
over the 1.00-cm distance in part (a).

(¢) The potential difference is zero because both probes are at the same distance from the wire, and hence at the
same potential.

EVALUATE: Since a voltmeter measures potential difference, we are actually given AV, even though that is not
stated explicitly in the problem.

(18x10° N-mz/Cz)ln[3'50 Cm]
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23.36.

23.37.

23.38.

23.39.

IDENTIFY: The voltmeter reads the potential difference between the two points where the probes are placed.
Therefore we must relate the potential difference to the distances of these points from the center of the cylinder. For
points outside the cylinder, its electric field behaves like that of a line of charge.

SETUp: Using AV =2Lln(rb /r,) and solving for r,, we have r, = r,e*™*'*
&,

1
175V
[2><9.00><109 N-mZ/CZ}( )
15.0x10”° C/m

ry = (2.50 cm) ™% = 4.78 cm.
The distance above the surface is 4.78 cm — 2.50 cm = 2.28 cm.
EVALUATE: Since a voltmeter measures potential difference, we are actually given AV, even though that is not
stated explicitly in the problem. We must also be careful when using the formula for the potential difference because
each r is the distance from the center of the cylinder, not from the surface.

IDENTIFY: For points outside the cylinder, its electric field behaves like that of a line of charge. Since a voltmeter
reads potential difference, that is what we need to calculate.

EXECUTE: The exponent is =0.648 , which gives

4 In(r/r,).
27,
EXECUTE: (a) Substituting numbers gives

SETUpP: The potential difference is AV =

AV =2L1n(rb/r,,) = (8.50x10® C/m)(2x9.00x10° N~m2/C2)ln[—10'0 Cm]
=z

6.00 cm
AV =7.82x 10"V =78200V =78.2kV

(b) E = 0 inside the cylinder, so the potential is constant there, meaning that the voltmeter reads zero.
EVALUATE: Caution! The fact that the voltmeter reads zero in part (b) does not mean that V = 0 inside the
cylinder. The electric field is zero, but the potential is constant and equal to the potential at the surface.
IDENTIFY: The work required is equal to the change in the electrical potential energy of the charge-ring system.
We need only look at the beginning and ending points, since the potential difference is independent of path for a
conservative field.

center o0

SETUP: (a) W= AU =¢AV =¢q(V,,,.. - V. )=4[Lg_oJ

EXECUTE: Substituting numbers gives
AU = (3.00 x 10 €)(9.00 x 10° N - m¥C?)(5.00 x 10™° C)/(0.0400 m) = 3.38 J

(b) We can take any path since the potential is independent of path.
(¢) SETUP: The net force is away from the ring, so the ball will accelerate away. Energy conservation gives

Uy=K . =imv’.
v= oo 208D g7y
m 0.00150 kg

EXECUTE: Solving for v gives

EVALUATE: Direct calculation of the work from the electric field would be extremely difficult, and we would need
to know the path followed by the charge. But, since the electric field is conservative, we can bypass all this
calculation just by looking at the end points (infinity and the center of the ring) using the potential.

IDENTIFY: The electric field is zero everywhere except between the plates, and in this region it is uniform and
points from the positive to the negative plate (to the left in Figure 23.32).

SETUP: Since the field is uniform between the plates, the potential increases linearly as we go from left to right
starting at b.

EXECUTE: Since the potential is taken to be zero at the left surface of the negative plate (@ in Figure 23.32), it is
zero everywhere to the left of b. It increases linearly from b to ¢, and remains constant (since E = 0) past ¢. The
graph is sketched in Figure 23.39.

EVALUATE: When the electric field is zero, the potential remains constant but not necessarily zero (as to the right
of ¢). When the electric field is constant, the potential is linear.

14
a b/

x
[

Figure 23.39
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23.40. IDENTIFY and SET UP: For oppositely charged parallel plates, E =& /¢, between the plates and the potential

difference between the plates is V = Ed .
—9 2

Execurs: (a) =2 =10X10°C/m* _ o N/C.

& &
(b) V =Ed =(5310N/C)(0.0220m) =117 V.
(c) The electric field stays the same if the separation of the plates doubles. The potential difference between the
plates doubles.
EVALUATE: The electric field of an infinite sheet of charge is uniform, independent of distance from the sheet.
The force on a test charge between the two plates is constant because the electric field is constant. The potential
difference is the work per unit charge on a test charge when it moves from one plate to the other. When the distance
doubles the work, which is force times distance, doubles and the potential difference doubles.

23.41. [IDENTIFY and SETUP: Use the result of Example 23.9 to relate the electric field between the plates to the potential
difference between them and their separation. The force this field exerts on the particle is given by Eq.(21.3). Use
the equation that precedes Eq.(23.17) to calculate the work.

vV 360 vV

ab .
d 0.0450 m
(b) F =|q|E=(2.40x10” C)8000 V/m)=+1.92x10" N
(c) The electric field between the plates is shown in Figure 23.41.

+ + + + +,

iy

Figure 23.41

=8000 V/m

EXECUTE: (a) From Example 23.9, E =

b

The plate with positive charge (plate a) is at higher potential. The electric field is directed from high potential

toward low potential (or, E is from + charge toward — charge), so E points from a to b. Hence the force that E
exerts on the positive charge is from a to b, so it does positive work.

W= EF_" .dl =Fd , where d is the separation between the plates.

W = Fd =(1.92x107° N)(0.0450 m) = +8.64x107" J

(d) V.-V, =+360 V (plate a is at higher potential)

AU =U,-U,=q(V,~-V,)=(240x10" C)(-360 V)=-8.64x107" J.
EvALUATE: Weseethat W, =-(U,-U,)=U_-U,.

a—b
23.42. IDENTIFY: The electric field is zero inside the sphere, so the potential is constant there. Thus the potential at the
center must be the same as at the surface, where it is equivalent to that of a point-charge.
SETUP: At the surface, and hence also at the center of the sphere, the field is that of a point-charge,
E =Q/(47¢,R).
EXECUTE: (a) Solving for Q and substituting the numbers gives
Q =4me,RV = (0.125 m)(1500 V)/(9.00 x 10° N- m¥C? = 2.08 x 10® C = 20.8 nC

(b) Since the potential is constant inside the sphere, its value at the surface must be the same as at the center,
1.50kV.
EVALUATE: The electric field inside the sphere is zero, so the potential is constant but is not zero.

23.43. IpENTIFY and SET UpP: Consider the electric field outside and inside the shell and use that to deduce the potential.
EXECUTE: (a) The electric field outside the shell is the same as for a point charge at the center of the shell, so the
potential outside the shell is the same as for a point charge:

v=—=2_for r>R.
4reyr

The electric field is zero inside the shell, so no work is done on a test charge as it moves inside the shell and all
points inside the shell are at the same potential as the surface of the shell: V = ﬁ for r<R.
&,
_RV _ (0.15 m)(-1200 V)
k k
(c) EVALUATE: No, the amount of charge on the sphere is very small. Since U =gV the total amount of electric

energy stored on the balloon is only (20 nC)(1200 V) =2.4x107 J.

(b) v =%" 50 ¢ 200C
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23.44.

23.45.

23.46.

IDENTIFY: Example 23.8 shows that the potential of a solid conducting sphere is the same at every point inside the
sphere and is equal to its value V=g/27¢,R at the surface. Use the given value of £ to find g.

SETUp: For negative charge the electric field is directed toward the charge.
For points outside this spherical charge distribution the field is the same as if all the charge were concentrated at the
center.

(3800 N/C)(0.200 m)*
8.99x10° N-m*/C*
Since the field is directed inward, the charge must be negative. The potential of a point charge, taking < as zero, is
ve_d _ (8.99x10° N-m*/C*)(-1.69x10° C) _

4re,r 0.200 m

on the surface of a conductor, the field inside the sphere due to this symmetrical distribution is zero. No work is
therefore done in moving a test charge from just inside the surface to the center, and the potential at the center must
alsobe ~760V.

EVALUATE: Inside the sphere the electric field is zero and the potential is constant.
IDENTIFY: Example 23.9 shows that W{y) = Ey , where y is the distance from the negatively charged plate, whose
potential is zero. The electric field between the plates is uniform and perpendicular to the plates.
SETUP: V increases toward the positively charged plate. E is directed from the positively charged plated toward
the negatively charged plate.
EXECUTE: (a) E =X=ﬂ=2.82x104 V/m and y=—‘{. V=0at y=0, V=120V at y=043cm,
d 0.0170 m E
V=240V at y=0.85cm, V=360Vat y=128 cmand V=480V at y=1.70 cm . The equipotential surfaces

are sketched in Figure 23.45. The surfaces are planes parallel to the plates.

(b) The electric field lines are also shown in Figure 23.45. The field lines are perpendicular to the plates and the
equipotential lines are parallel to the plates, so the electric field lines and the equipotential lines are mutually
perpendicular.

EVALUATE: Only differences in potential have physical significance. Letting V=0 at the negative plate is a
choice we are free to make.

l4]

EXECUTE: E= =1.69%107°% C.
47

and |q| =4ne Er’ =

r2

—760V at the surface of the sphere. Since the charge all resides

V=120V V=360V

(e 18

V=0V V=240V V=480V
Figure 23.45

IDENTIFY: By the definition of electric potential, if a positive charge gains potential along a path, then the
potential along that path must have increased. The electric field produced by a very large sheet of charge is uniform
and is independent of the distance from the sheet.

(a) SETUpP: No matter what the reference point, we must do work on a positive charge to move it away from the
negative sheet.

EXECUTE: Since we must do work on the positive charge, it gains potential energy, so the potential increases.

(b) SET UP: Since the electric field is uniform and is equal to o /2¢,, we have AV=Ed = Zld .
60
EXECUTE: Solving for d gives

_26AV 2(8.85x10™ C*/N-m’)(1.00V)
o 6.00x10”° C/m?

EVALUATE: Since the spacing of the equipotential surfaces (4 =2.95 mm) is independent of the distance from the
sheet, the equipotential surfaces are planes parallel to the sheet and spaced 2.95 mm apart.

d =0.00295 m =2.95 mm
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23.47

23.48.

23.49.

IDENTIFY and SET UP: Use Eq.(23.19) to calculate the components of E.
EXECUTE: V =Axy—-Bx’+Cy

@ E, =Y - _Ay+ 2B
ox

Ey=— V o _ax—C
oy
oV
=——=0
z aZ

(b) E=0 requires that E = E =E, =0.

E, =0 everywhere.

E =0 at x=-C/A

And E, is also equal zero for this x, any value of z, and y = 2Bx/A = (2B/A)(—C/A) =—2BC/A’.
EVALUATE: Vdoesn’tdependonzso E, =0 everywhere.

IDENTIFY: Apply Eq.(21.19).

SETUP: Eq.21.7)says E = L@f- is the electric field due to a point charge g.

4re, v
WV__29 kQ kQr  _kQx
EXECUTE: E=——=—— -
(a) ax dx [\/xz N yz +Z2J (x2 + yz +z )3/2 r3

Similarly, E, :@ and E, =k—Q3Z.
r r

’
r r

(b) From part (a), E = kQ [ ﬂ + 1] = gf which agrees with Equation (21.7).
r r

EVALUATE: Vis ascalar. E is a vector and has components.

kq kq

IDENTIFY and SET UP:  For a solid metal sphere or for a spherical shell, V =—= outside the sphere and V = = at
r

all points inside the sphere, where R is the radius of the sphere. When the electric field is radial, E = _B_V

r

a

EXECUTE: (a) (i) r <r,: This region is inside both spheres. V = E— k—q = kq[i —l] .
r r

(ii) r, <r <r,: This region is outside the inner shell and inside the outer shell. V = kq k_q kq[ ]
T, 7
(iii) r > r, : This region is outside both spheres and V =0 since outside a sphere the potentlal is the same as for

point charge. Therefore the potential is the same as for two oppositely charged point charges at the same location.
These potentials cancel.

() V, =L[—q——i] and V,=0,s0 V, =4Lq{l_l]_

e, \ 1, T,

a

(c) Between the spheres r, <r <r, and V =kq l_l L E=— oV _Li 1 l =+_1_i2=i__2_
r o ar 4re, or\ r 1, 4re, r 1 1)r

L. h

(d) From Equation (23.23): E =0, since V is constant (zero) outside the spheres.

(e) If the outer charge is different, then outside the outer sphere the potential is no longer zero but is

V= lg 10_146-0 . All potentials inside the outer shell are just shifted by an amount

dme, r Arme r 4ﬂ60 r
V= —%g Therefore relative potentials within the shells are not affected. Thus (b) and (c) do not change.
e 1,

However, now that the potential does vary outside the spheres, there is an electric field there:
vV _ d(kqg —kQ] kg, Q) k

E=- — S —= == 1-===(q-Q)-
o Br[ r r r? qg) r 4-9

EVALUATE: In part () the potential is greater than zero for all r <y, .
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23.50.

23.51.

23.52.

11

ro o

IDENTIFY: Exercise 23.49 shows that V =kq {i - i] for r<r,, V= kq[

r I,
1 1
Vab=kCI[r——7J-
b

] for r,<r<r, and

a b
a

SETUP: E= k—? , radially outward, for r, <r <y,
r

EXECUTE: (a) V, =kq El - l} =500V gives g= 0 00V 0 =7.62x107"° C.
rﬂ rb —
[0.012 m 0.096 m]
(b) V, =0 so V, =500 V. The inner metal sphere is an equipotential with V =500 V . 1.1 -+-kL . V=400V at
r r, kg

r=145cm, V=300Vat r=185cm, V=200Vat r=253cm, V=100V at r=400cm, V=0at

r=9.60 cm . The equipotential surfaces are sketched in Figure 23.50.

EVALUATE: (c) The equipotential surfaces are concentric spheres and the electric field lines are radial, so the field
lines and equipotential surfaces are mutually perpendicular. The equipotentials are closest at smaller », where the
electric field is largest.

Figure 23.50

IDENTIFY: Outside the cylinder it is equivalent to a line of charge at its center.
SETUP: The difference in potential between the surface of the cylinder (a distance R from the central axis) and a

general point a distance r from the central axis is given by AV = %ln(r/ R).
&

EXECUTE: (a) The potential difference depends only on r, and not direction. Therefore all points at the same value
of r will be at the same potential. Thus the equipotential surfaces are cylinders coaxial with the given cylinder.

(b) Solving AV = Lln(r /R) forr, gives r=Re”™ ",
27e,

For 10 V, the exponent is (10 V)/[(2 X 9.00 x 10° N - m*/C?)(1.50 x 10~ C/m)] = 0.370, which gives r = (2.00 cm)
¢**"° =2.90 cm. Likewise, the other radii are 4.20 cm (for 20 V) and 6.08 cm (for 30 V).
©)Ar;=290cm-2.00cm=0.90 cm; Ar, =420 cm - 2.90 cm = 1.30 cm; Ar; = 6.08 cm—4.20 cm = 1.88 cm
EVALUATE: As we can see, Ar increases, so the surfaces get farther apart. This is very different from a sheet of
charge, where the surfaces are equally spaced planes.

IDENTIFY: The electric field is the negative gradient of the potential.

oV . . .

SErUp: E = 3 so E, is the negative slope of the graph of V as a function of x.
by

EXECUTE: The graph is sketched in Figure 23.52. Up to @, V'is constant, so E, = 0. From a to b, V is linear with a

positive slope, so E, is a negative constant. Past b, the V-x graph has a decreasing positive slope which approaches

zero, so E, is negative and approaches zero.
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23.53.

23.54.

EVALUATE: Notice that an increasing potential does not necessarily mean that the electric field is increasing.

——————dn

Figure 23.52

(a) IDENTIFY: Apply the work-energy theorem, Eq.(6.6).
SETUP: Points a and b are shown in Figure 23.53a.

v, =0 <—E
———————>¢
4 a 8.00 cm b
Figure 23.53a

EXECUTE: W, =AK=K,-K,=K,=4.35x10"]
The electric force F, and the additional force F' both do work, so that W, =W, +W,.
~W, =4.35x107°] -6.50x107° J=-2.15x10"J

EVALUATE: The forces on the charged particle are shown in Figure 23.53b.

tot

W, =W,

Fg ¢ F
B and Dy g

Figure 23.53b

The electric force is to the left (in the direction of the electric field since the particle has positive charge). The
displacement is to the right, so the electric force does negative work. The additional force F is in the direction of the
displacement, so it does positive work.

(b) IDENTIFY and SET UP:  For the work done by the electric force, W, ,, =q(V,—-V,)

2.15%10° J
Executr: V,—V, =Neme 2107 T, eai0v v

g 7.60x10° C

EVALUATE: The starting point (point a) is at 2.83x10° V lower potential than the ending point (point b). We
know that V, >V, because the electric field always points from high potential toward low potential.

(c) IDENTIFY: Calculate E from V, —V, and the separation d between the two points.

SETUPp: Since the electric field is uniform and directed opposite to the displacement W, , = —F,d = —gEd, where
d =8.00 cm is the displacement of the particle.
W V,-V, -2.83x10°V

EXECUTE: E=-—22t-— =
qd d 0.0800 m

EVALUATE: In part (a), W, is the total work done by both forces. In parts (b) and (c) W,

a—b

=3.54x10" V/m.

is the work done just
by the electric force.

. . . . ke®
IDENTIFY: The electric force between the electron and proton is atiractive and has magnitude ¥ =—-. For
r

2
. . . . €
circular motion the acceleration is a_, = Vir. U=—k—.
r

SETUP: e=1.60x10"" C.1eV=1.60x10"7.

2 2 2
EXECUTE: (a) m =—k27 and v= ki.
r r mr
2
) K=Lm2=Llk __1y
2 2 r 2
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23.55.

23.56.

23.57.

23.58.

2 -19 2
© E=k+U=2u=-1%"_ 1k(1'60xw_u O 2 17x107 T =136V .
2 2 r 2 529x10"'m

EVALUATE: The total energy is negative, so the electron is bound to the proton. Work must be done on the
electron to take it far from the proton.

IDENTIEY and SETUP: Calculate the components of E from Eq.(23.19). Eq.(21.3) gives F from E.
EXECUTE: (a) V=Cx*"?

C=V/x**=240 V/(13.0x10° m)** =7.85x10* V/m*?
4

(b) E, = v ——Cx'"?* =—(1.05%x10° V/m**)x"?

ox 3
The minus sign means that £ is in the —x -direction, which says that E points from the positive anode toward the
negative cathode.
(¢) F =gE so F,=—¢E, =%eCx"
Halfway between the electrodes means x = 6.50x10° m.

F,=%(1.602x107" C)(7.85x10* V/m**)(6.50x10™* m)"* =3.13x10™° N

F_ is positive, so the force is directed toward the positive anode.

EVALUATE: Vdependsonlyonx, so £, =E =0. E is directed from high potential (anode) to low potential

(cathode). The electron has negative charge, so the force on it is directed opposite to the electric field.

IDENTIFY: At each point (a and b), the potential is the sum of the potentials due to both spheres. The voltmeter
reads the difference between these two potentials. The spheres behave like a point-charges since the meter is
connected to the surface of each one.

SETUP: (a) Call g the point on the surface of one sphere and b the point on the surface of the other sphere, call r
the radius of each sphere, and call d the center-to-center distance between the spheres. The potential difference V,,
between points @ and b is then

VooV Vy=— |4, 4 4, -a)]_ 2a(1 1
dre,| r d—-r \r d-r 47r£0kd—r r

EXECUTE: Substituting the numbers gives

1 1
0750 m 0.250 m

V= V= 2(175uC)(9.00x10° N~m2/c2)[ ] =-840%10°V

The meter reads 8.40 MV.

(b) Since V, — V, is negative, V, > V,, so point ¢ is at the higher potential.

EVALUATE: An easy way to see that the potential at g is higher than the potential at b is that it would take positive
work to move a positive test charge from b to a since this charge would be attracted by the negative sphere and
repelled by the positive sphere.

ENTIFY: U =<4%
"

SETUP: Eight charges means there are 8(8 —1)/2 = 28 pairs. There are 12 pairs of g and —¢g separated by d, 12

pairs of equal charges separated by J2d and 4 pairs of g and —g separated by V3d.
2
EXECUTE: (a) U =kq2[—-£+ 12 - 4 ]= 12kq [1—L+LJ=—1.46q2/7reod
d 2d 3d d V233

EVALUATE: (b) The fact that the electric potential energy is less than zero means that it is energetically favorable
for the crystal ions to be together.

IDENTIFY: For two small spheres, U = k4.9, . For part (b) apply conservation of energy.
r

SETUP: Let q,=2.00 uCand ¢, =-3.50 4C . Let r,=0.250 mand r, > o=
(8.99x10° N-m’/C?)(2.00x10™ C)(-3.50x10™° C)
0.250 m
() K,=0.U,=0.U,=-02521. K,+U,=K, +U, gives K, =0252J. K, =1mv?, s0

K . J
e e [IOBID g
m  \1.50x107 kg

EXECUTE: (a) U= =-0.2521]
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EVALUATE: As the sphere moves away, the attractive electrical force exerted by the other sphere does negative
work and removes all the kinetic energy it initially had. Note that it doesn’t matter which sphere is held fixed and
which is shot away; the answer to part (b) is unaffected.

23.59. (a) IDENTIFY: Use Eq.(23.10) for the electron and each proton.
SErUpr: The positions of the particles are shown in Figure 23.5%a.

+e —e +e 10 10
. —e . ® r=(1.07x107" m)/2=0.535%10"" m
Figure 23.59a
EXECUTE: The potential energy of interaction of the electron with each proton is
2
=—1—( ¢ ), so the total potential energy is
4re, r

2 9 N . 1 2/(2 -19 2
2e _ 2(8.988x10° N-m*/C*)(1.60x107" C) = _8.60%107 ]

U=- ~10
ey 0.535x107" m

U=-860x10"J(1eV/1.602x107 J)=—-53.7 eV

EVALUATE: The electron and proton have charges of opposite signs, so the potential energy of the system is

negative.
(b) IDENTIFY and SETUP: The positions of the protons and points a and b are shown in Figure 23.59b.
. b
T T ro=\r+d
d
te te  po=r=0.535x10""m
r, a 1,
Figure 23.59b

Apply K, +U_ +W,

other

=K, + U, with point @ midway between the protons and point & where the electron
instantaneously has v=0 (at its maximum displacement d from point a).

EXECUTE: Only the Coulomb force does work, so W, =0.

U,=-8.60x10"" J (from part (a))

K,=1im =1(9.109x107" kg)(1.50x10° m/s)* =1.025x107"* J

K,=0

U, =-2ke*/r,

Then U, =K, +U, - K, =1.025x10"® J-8.60x107"* ] =—7.575x107"* J.

ther

2 9 242 -19 2
L 2ke’ __2(8988x10° N-m?/C )(118.60><1o O ¢ 075x10-" m
U, ~7.575%107" ]

Then d =4[r? —r? =[(6.075x10™" m)? —(5.35x 107" m)* =2.88x10™" m.
EVALUATE: The force on the electron pulls it back toward the midpoint. The transverse distance the electron
moves is about 0.27 times the separation of the protons.

23.60. IDENTIFY: Apply ZFX =0 and ZFy =0 to the sphere. The electric force on the sphere is F, =qE . The
potential difference between the plates is V=Ed .
SETUP: The free-body diagram for the sphere is given in Figure 23.56.
EXECUTE: Tcosd=mgand Tsind =F, gives F, = mgtan8=(1.50x107 kg)(9.80 m/s)tan(30°) = 0.0085 N .

Vg Fd _ (0.0085 N)(0.0500 m)

F =FEq=— and V= — =478V.
d q 8.90x10™ C
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23.61.

23.62.

23.63.

EVALUATE: E=V/d =956 V/m. E =0/¢and 0 = E¢,=8.46x10” C/m’.
T

!
!
iKY
i

mg
Figure 23.60

(a) IDENTIFY: The potential at any point is the sum of the potentials due to each of the two charged conductors.
SETUP: From Example 23.10, for a conducting cylinder with charge per unit length A the potential outside the

cylinder is given by V = (A/27¢)In(r, /r) where ris the distance from the cylinder axis and 7, is the distance from

the axis for which we take V = 0. Inside the cylinder the potential has the same value as on the cylinder surface. The
electric field is the same for a solid conducting cylinder or for a hollow conducting tube so this expression for V
applies to both. This problem says to take r, =b.

EXECUTE: For the hollow tube of radius b and charge per unit length —1: outside V =—(A/27e,)In(b/r); inside
V=0 since V=0 at r=b.
For the metal cylinder of radius & and charge per unit length A:
outside V =(A/27¢,)In(b/r), inside V = (4/27e,)In(b/a), the value at r =a.
(i) r <a;inside both V =(A/27¢,)In(b/a)
{(il) a <r <b; outside cylinder, inside tube V =(1/27¢))In(b/r)
(iii) r > b; outside both the potentials are equal in magnitude and opposite in sign so V =0.
(b) For r=a, V, =(A/27¢,)In(bla).
For r=b, V,=0.
Thus V,, =V -V, =(A/27¢,)In(b/a).
(c) IDENTIFY and SET UP: Use Eq.(23.23) to calculate E.
Exgcvre: E=-2 -+ 9y (é} = —LELI—E} = Vw1
or 2ze, or  \ r 27, \ b r* ) In(bla) r
(d) The electric field between the cylinders is due only to the inner cylinder, so V,, is not changed,
V., = (A 27e,)In(bla).
EVALUATE: The electric field is not uniform between the cylinders, so V,, # E(b—a).
IDENTIFY: The wire and hollow cylinder form coaxial cylinders. Problem 23.61 gives E(r)= F‘;"I;‘;% .

SETUP: a=145x10°m, »=0.0180m.

EXECUTE: E=1 (Vb;; )l and V,, = Eln(b/a)r =(2.00x10* N/C)(In(0.018 m/145x10°° m))0.012m=1157 V.
n(b/a) r

EVALUATE: The electric field at any r is directly proportional to the potential difference between the wire and the
cylinder.

IDENTIFY and SETUP: Use Eq.(21.3) to calculate F and then F = mad gives d.
EXECUTE: (a) F . =g4E. Since g =—e is negative F » and E are in opposite directions; E is upward so FE is

downward. The magnitude of F; is
F, =|q|E =€E =(1.602x10™"* C)(1.10x10’ N/C) =1.76x107'° N.
(b) Calculate the acceleration of the electron produced by the electric force:

F  176x107° N

a=—=— " =1.93x10" m/s*
m 9.109x107" kg

EVALUATE: This is much larger than g =9.80 m/s?, so the gravity force on the electron can be neglected. F, is

downward, so @ is downward.

(c) IDENTIFY and SETUP: The acceleration is constant and downward, so the motion is like that of a projectile.
Use the horizontal motion to find the time and then use the time to find the vertical displacement.
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EXECUTE: x-component
vy, =6.50x10° m/s; a =0; x-x =0.060m; t=?
x—X,=v,t++a 1’ and the a_ term is zero, so
_x~% _  0060m
v, 6.50x10° m/s

y-component
Vo, =0; @, =1.93x10" m/s’; r=9.231x107 m/s; y—y,=?

t =9.231x107 s

Y= Yo=vyt+iat
y— ¥, =1(1.93x10" m/s*)(9.231x107° s5)* =0.00822 m =0.822 cm
(d) The velocity and its components as the electron leaves the plates are sketched in Figure 23.63.

v =y, =6.50x10° m/s (since a,=0)

| V, =V, + ayt
v’y[ : L v, =0+ (1.93x10% m/s?)(9.231%10° )

""""""" Vv, =1.782x10° m/s
Figure 23.63

6
Yy L782XI0 S _ 6 2945 g0 ar=15.3°.

oy

v, 6.50x10° m/s

EVALUATE: The greater the electric field or the smaller the initial speed the greater the downward deflection.

(e) IDENTIFY and SETUpP: Consider the motion of the electron after it leaves the region between the plates.

Outside the plates there is no electric field, so a =0. (Gravity can still be neglected since the electron is traveling at

such high speed and the times are small.) Use the horizontal motion to find the time it takes the electron to travel

0.120 m horizontally to the screen. From this time find the distance downward that the electron travels.

EXECUTE: x-component

Vo, =6.50x10° m/s; a,=0; x—x,=0.120m; =7

x—x,=v,r+31a 1’ and the g, term is term is zero, so

_x=x _ 0120m
v,  6.50x10° m/s

y-component
vy, =1.782x10° m/s (from part (b)); a,=0; t=1.846x10" m/s; y—y,=?

Y= Yo =Vo,t +1a 1* =(1.782x10° m/s)(1.846x10™® 5)=0.0329 m =3.29 cm

EVALUATE: The electron travels downward a distance 0.822 cm while it is between the plates and a distance
3.29 cm while traveling from the edge of the plates to the screen. The total downward deflection is
0.822 cm+3.29 cm=4.11 cm.
The horizontal distance between the plates is half the horizontal distance the electron travels after it leaves the
plates. And the vertical velocity of the electron increases as it travels between the plates, so it makes sense for it to
have greater downward displacement during the motion after it leaves the plates.

23.64. IDENTIFY: The charge on the plates and the electric field between them depend on the potential difference across the
plates. Since we do not know the numerical potential, we shall call this potential V and find the answers in terms of V.

(a) SETUP: For two parallel plates, the potential difference between themis V = Ed = 4= Q—j .
© %

tana =

t =1.846x107" 5

EXECUTE: Solving for Q gives
Q=¢AV/d =(8.85x 107 CY/N- m*)(0.030 m)*V/(0.0050 m)

0 =159V x 1072 C = 1.59V pC, when V is in volts.
(b) E = V/d = V/(0.0050 m) = 200V V/m, with Vin volts.
() SETUP: Energy conservation gives %mv2 =eV.
EXECUTE: Solving for v gives

2(1.60x10™° C)v
V= }Ze_v = ( — ) =5.93x10°V"2 m/s , with V in volts
m 9.11x10™ kg

EVALUATE: Typical voltages in student laboratory work run up to around 25 V, so the charge on the plates is typically
about around 40 pC, the electric field is about 5000 V/m, and the electron speed would be about 3 million my/s.
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23.65. (a) IDENTIFY and SETUP: Problem 23.61 derived that F = —111(?—;)1’ where g is the radius of the inner cylinder
ar

(wire) and & is the radius of the outer hollow cylinder. The potential difference between the two cylinders is V,.

Use this expression to calculate E at the specified 7.

EXECUTE: Midway between the wire and the cylinder wall is at a radius of

r=(a+b)/2=(90.0x10"° m+0.140 m)/2 =0.07004 m.

3
- 1 20.0x19 ¥ =9.71x10* V/m
In(b/a) ¥ In(0.140 m/90.0x10™ m)(0.07004 m)

(b) IDENTIFY and SET UP: The electric force is given by Eq.(21.3). Set this equal to ten times the weight of the

particle and solve for |q , the magnitude of the charge on the particle.

EXECUTE: F, =10mg

1 10(30.0x10™ .80 m/s’
lg| £ =10mg and || =108 - 10300x10" kORO M) _j 5101 ¢
E 9.71x10" V/m

EVALUATE: It requires only this modest net charge for the electric force to be much larger than the weight.
23.66. (a) IDENTIFY: Calculate the potential due to each thin ring and integrate over the disk to find the potential. Vis a

scalar so no components are involved.

SETUp: Consider a thin ring of radius y and width dy. The ring has area 27y dy so the charge on the ring is

dg=0Q2rydy).

EXECUTE: The result of Example 23.11 then says that the potential due to this thin ring at the point on the axis at a

distance x from the ring is

V= 1 dg =27r0' ydy
4rre, \/xZ + yz Arre, \/xz + yz
R
V= _[d y=" R—y@—=i[\1x2 +y2} =£(\/x2 +R* —x)
2e, 7 JxP+yt g o 2,
EVALUATE: For x>> R this result should reduce to the potential of a point charge with Q = o7z R*.
Va2 + R =x(1+ R*/x*)"? = x(1+ R*/2x%) so x*+R> —x=R*/2x
2 2
Then V-2 R = onR = 0 , as expected.
2¢)2x  4rmex  4mex
(b) IDENTIFY and SETUP: Use Eq.(23.19) to calculate E .
Execute: E =-3V=-2 _x__l} —ﬂ[l_;
: ox 2¢,\ X+ R? 2\ x JX*+R? '

EVALUATE: Our result agrees with Eq.(21.11) in Example 21.12.

23.67. (a)IDENTIFY: Use V-V = fEdZ

SETUp: From Problem 22.40, E(r) = 3 ﬂrRz for » <R (inside the cylindrical charge distribution) and
&
E(r)= 2/1r for =2 R. Let V=0 at » =R (at the surface of the cylinder).
TEF

EXECUTE: r>R
Take point a to be at R and point b to be at », where > R. Let dl =dr. E and dF are both radially outward, so

E.-df=Edr. Thus V,-V = L:Edr. Then V, =0 gives V, =—L:Edr. In this interval (» > R), E(r)=A/27 g, so

) A rdr A r
V=- dr=—2 [ |
’ '[R 27eyr 27e, R ¥ 27e, [R]

EVALUATE: This expression gives ¥/ =0 when » =R and the potential decreases (becomes a negative number of

3

larger magnitude) with increasing distance from the cylinder.
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23.68.

23.69.

23.70.

EXECUTE: r<R
Take point a at r, where 7 <R, and point b at R. E -dF = Edr as before. Thus V, -V, = J “Edr. Then V, =0 gives

V= jREdr. In this interval (r <R), E(r)=Ar/27eR?, so
2 2
v.=][" LB ;[ rdr= AR )
" 2me,R 27we,R” 2re,R°\ 2 2

el

EVALUATE: This expression also gives V., =0 when r=R. The potential is 1/47e, at r =0 and decreases with

increasing r.
(b) EXECUTE: Graphs of V and E as functions of r are sketched in Figure 23.67.
\%4

E
A
A 4T€,
2meQR 0 R 2R 3R
t } r
_Aln2
21760
— t r

| R 2R 3R ~Aln3

21760

Figure 23.67
EVALUATE: E at any r is the negative of the slope of V() at that r (Eq.23.23).

IDENTIFY: The alpha particles start out with kinetic energy and wind up with electrical potential energy at closest
approach to the nucleus.
SETUpP: (a) The energy of the system is conserved, with U =(1/4re,)(qq,/r) being the electric potential energy.

With the charge of the alpha particle being 2e and that of the gold nucleus being Ze, we have
1, 1 2z

my” =——
2 4re, R
EXECUTE: Solving for v and using Z = 79 for gold gives

=4.4x%10" m/s

4z (9.00x10° N-m*/C?)(4)(79)(1.60x10™° C)’
4re, ) mR -

(6.7x107 kg})(5.6x107* m)

We have neglected any relativistic effects.

(b) Outside the atom, it is neutral. Inside the atom, we can model the 79 electrons as a uniform spherical shell,
which produces no electric field inside of itself, so the only electric field is that of the nucleus.

EVALUATE: Neglecting relativistic effects was not such a good idea since the speed in part (a) is over 10% the
speed of light. Modeling 79 electrons as a uniform spherical shell is reasonable, but we would not want to do this
with small atoms.

IDENTIFY: V, -V, = jbE-di.

1 L
SETUP: From Example 21.10, we have: E, =—%. E-dl=Edx.leta=c soV =0.
dre, (x"+a’)
x ’ u=;\’1+aZ 1
EXECUTE: V =-—2 ad =2 g

i )P Ha T dre | 4mqi+a
EVALUATE: Our result agrees with Eq.(23.16) in Example 23.11.
IDENTIFY: Divide the rod into infinitesimal segments with charge dg. The potential dV due to the segment is

dv = %ﬂ . Integrate over the rod to find the total potential.
e T

SETUP: dg=Adl,with A=Q/zmaand di=a db.

L dg_ 1 Adl_ 1 Qdi_ 1 Qd6 . _1709d6_ 1 Q

EXECUTE: dV = = = V= J = .
4me, r  4me, a 4Ame ma a 4Are, 7a dmey, s ma  4A7e, a
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EVALUATE: All the charge of the ring is the same distance a from the center of curvature.

23.71. IDENTIFY: We must integrate to find the total energy because the energy to bring in more charge depends on the
charge already present.
SETUP: If pis the uniform volume charge density, the charge of a spherical shell or radius » and thickness dr is
dq = p 4mr* dr, and p= Q/(4/3 nR®). The charge already present in a sphere of radius r is ¢ = p(4/3 7). The energy
to bring the charge dy to the surface of the charge g is Vdg, where V is the potential due to g, which is g/47eyr.
EXECUTE: The total energy to assemble the entire sphere of radius R and charge @ is sum (integral) of the tiny
increments of energy.

3

4
P-Tr 2
_ _r 49 _(*73 3 1o
U= [vdg = -[47reor dq=] pp (pamridr)= 5[4;:.50 TJ

where we have substituted p = Q/(4/3 nR’) and simplified the result.

EVALUATE: For a point-charge, R — 0 so U — o, which means that a point-charge should have infinite self-
energy. This suggests that either point-charges are impossible, or that our present treatment of physics is not
adequate at the extremely small scale, or both.

23.72. IDENTIFY: V-V = j"E -dl . The electric field is radially outward, so E-dl =E dr .
SETUP: Let a=c,s50 V =0.

EXECUTE: From Example 22.9, we have the following. For r>R: E = kQ and V=—-k0 _[d,rz = K0 .
r

o0

’kaQer _Q_i
RR2R 2R* 2R|” R*|

For r<R: E—kg and V=— _[E dF - _[E d'”'—k—Q—k—Q_[ “dr’ R kgl 2
R R R

(b) The graphs of V and E versus r are sketched in Figure 23.72.
EVALUATE: For r < R the potential depends on the electric field in the region 7 to oo .
\4 E

~

I [
R 3R R 3R

Figure 23.72

23.73. IDENTIFY: Problem 23.72 shows that ¥/ = —Q—(3 —7*/R?) for r<R and V= 9 for r=2R.
8me,R Areyr

SerUp: V= 30 Vo= Y
8re,R 4rze,R

EXECUTE: (a) V-V = 9
8re,R
(b) If 0>0, Vis higher at the center. If @ <0, V is higher at the surface.
EVALUATE: For Q>0 the electric field is radially outward, E is directed toward lower potential, so ¥ is higher at
the center. If 0 <0, the electric field is directed radially inward and ¥ is higher at the surface.

kq

23.74. IDENTIFY: For r<c,E =0 and the potential is constant. For » > ¢, E is the same as for a point charge and V=—.
r

SETUP: V. =0
EXECUTE: (a) Points a,b,and ¢ are all at the same potential, so V-V =V -V=V -V =0.

. 99x10° N-m?/C’)(150x10°° C)
° 7 R 0.60 m

(b) They are all at the same potential.

(c) Only V — V. would change; it would be —2.25x10° V.

=225x10°V
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23.75.

23.76.

23.77.

23.78.

EVALUATE: The voltmeter reads the potential difference between the two points to which it is connected.
IDENTIFY and SET UP: Apply F. =—dU /dr and Newton's third law.

EXECUTE: (a) The electrical potential energy for a spherical shell with uniform surface charge density and a point
charge g outside the shell is the same as if the shell is replaced by a point charge at its center. Since F. =—dU/dr,

this means the force the shell exerts on the point charge is the same as if the shell were replaced by a point charge at
its center. But by Newton’s 3™ law, the force ¢ exerts on the shell is the same as if the shell were a point charge. But

g can be replaced by a spherical shell with uniform surface charge and the force is the same, so the force between the

shells is the same as if they were both replaced by point charges at their centers. And since the force is the same as for
point charges, the electrical potential energy for the pair of spheres is the same as for a pair of point charges.

(b) The potential for solid insulating spheres with uniform charge density is the same outside of the sphere as for a
spherical shell, so the same result holds.

(c) The result doesn’t hold for conducting spheres or shells because when two charged conductors are brought close
together, the forces between them causes the charges to redistribute and the charges are no longer distributed
uniformly over the surfaces.

EVALUATE: For the insulating shells or spheres, F =k -2 |qlq2|
2

and U = % where ¢, and g, are the charges of
r

the objects and r is the distance between their centers.
IDENTIFY: Apply Newton's second law to calculate the acceleration. Apply conservation of energy and
conservation of momentum to the motions of the spheres.

"11‘12'

SETUp: Problem 23.75 shows that F=k~—= and U = kq_1q2_ where ¢, and g, are the charges of the objects
r

and r is the distance between their centers.
EXECUTE: Maximum speed occurs when the spheres are very far apart. Energy conservation gives
kag, _ %mmv?o + %mmvfm . Momentum conservation gives myvs, = m, v,5, and vsy =3v,5, . ¥ =0.50 m. Solve for vy,

r
and v ¢ vy, =12.7 m/s, v,5, =4.24 m/s . Maximum acceleration occurs just after spheres are released. 2 F =ma
kq,q (9x10°N-m?/CH)(107° C)(3x107° C)

Se= My50G50 - 050 m) =(0.15 kg)a150 .

0 =345, = 216 m/s” .
EVALUATE: The more massive sphere has a smaller acceleration and a smaller final speed.
IDENTIFY: Use Eq.(23.17) to calculate V,.
SETUP: From Problem 22.43, for R<r <2R (between the sphere and the shell) E = Q/4re,r*
Take a at R and b at 2R.

2R
EXECUTE: V, =V, -V, = IZR Edar=2_ I” ar_ 0 [_l Y [l_L]
R 4re, R 1 47:60 r g 47:eoR2R
Q
8re,R

EVALUATE: The electric field is radially outward and points in the direction of decreasing potential, so the sphere
is at higher potential than the shell.

IDENTIFY: V, -V, = J'bE’ -dl

gives a5, =72.0 m/s’ and

ab =

SETUP:  E is radially outward, so E -dl = E dr . Problem 22.42 shows that E(r)=0for r<a, E(r)=kq/r* for
a<r<b, E(r)=0for b<r<cand E(r)=kq/r*for r>c.

EXECUTE: (a) At r=c: V, =- —k%dr=ﬂ.
or c
¢ b
() At r=b: V,=-[E-dF - [E-dF =L -0=%2.
e : c c
c b a a
- . kq dr 1 1 1
OAt r=a:V = - |E-df="2~kg|==kg| ~——+—
© o ;[ ;[ ,;[ c qb ? kq[c b a}

(@At r=0: V,=kq [—— —+ } since it is inside a metal sphere, and thus at the same potential as its surface.

EVALUATE: The potential difference between the two conductors is V, -V, =kg [l - %} .
a
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IDENTIFY: Slice the rod into thin slices and use Eq.(23.14) to calculate the potential due to each slice. Integrate
over the length of the rod to find the total potential at each point.
(a) SETUP: An infinitesimal slice of the rod and its distance from point P are shown in Figure 23.79a.

x' r=x+a-—x

dQ
a x
Figure 23.79a
Use coordinates with the origin at the left-hand end of the rod and one axis along the rod. Call the axes x” and y’

so as not to confuse them with the distance x given in the problem.
EXECUTE: Slice the charged rod up into thin slices of width dx’. Each slice has charge dQ = Q(dx"/a) and a

distance r =x+a—x" from point P, The potential at P due to the small slice dQ is

4V = l(dQ] 1g[ dx ]
4re, 4mey a\x+a—x

Compute the total V at P due to the entire rod by integrating dV over the length of the rod (x'=0 to x'=a):

v=[av= Q r_ & __ Q  pea-yyp=—2 h{ﬂ}

drea *® (x+a—x") 4mea drzea x

EVALUATE: As x>, Vo Y ln[f]=0.
dmea \x

(b) SETUP: An infinitesimal slice of the rod and its distance from point R are shown in Figure 23.79b.

Figure 23.79b

dQ =(Q/a)dx as in part (a)

Each slice dQ is a distance r =+/y” +(a—x")* from point R.
EXECUTE: The potential dV at R due to the small slice dQ is

1 [dQ] 1 Q dx’
dav = .
47[60 47[60 a Jy2+(a—x,)2

V:jdV—Woaf\/y e

In the integral make the change of variable u =a—x"; du =—dx’

= [ln(u S )}

4;reoaj\/y u>  4mea

=—L[lny—ln(a+‘ly +a’ )]—4 [m[‘“’\/“ +Y ﬂ
7e,a

Y

(The expression for the integral was found in appendix B.)

EVALUATE: As y 5o, V5> —— Y |2 |=0.
drea \y
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(¢) SETUp: part (a): V= 0 ln(x-’-a]: 9 ln[l+£].

drea \ x X

From Appendix B, In(1+u)=u—-%"/2...,s0 In(l+a/x)=a/x—a’/2x" and this becomes a/x when x is large.

Execute: Thus V- 0 [ﬁj— 0 . For large x, V becomes the potential of a point charge.
x

4rea _47reoa
2 2 2
part 1) V=—2 || EINTHY (| 14y 109
4re,a y drea |y y

From Appendix B, y/1+a*/y* =(1+a*/y*)'? =1+a*/2y* +...
Thus a/y++1+a*/y* >1+al/y+a* /2y’ +...—1+a/y. And then using In(1+u)=u gives
Vo2 a2 (2]-_2
4reya Area\y ) 4rmey
EVALUATE: For large y, V becomes the potential of a point charge.

kQ

IDENTIFY: The potential at the surface of a uniformly charged sphere is V= =

SETUP: For a sphere, V= gzz'R3 . When the raindrops merge, the total charge and volume is conserved.

kO _ k(~1.20x107 C)
R 6.50x10* m
(b) The volume doubles, so the radius increases by the cube root of two: R, = Y2R=8.19x10"* m and the new
_kQ... _k(-2.40x1077 C)

charge is =20 =-240x10"? C. The new potential is V= = — — -=-264V.
g Qnew Q p new Rnew 819)(10_4 m

EVALUATE: The charge doubles but the radius also increases and the potential at the surface increases by only a

EXecuTtE: (a) V= =-16.6V.

factor of % =273,
2

(a) IDENTIFY and SET UP: The potential at the surface of a charged conducting sphere is given by Example 23.8:

V= Ll. For spheres 4 and B this gives
4re, R

V,= 9 and ‘{;=——QB .
4re R, 4re R,
EXeEcutE: V, =V, gives Q,/47¢R, =0, /47eR, and Q,/0, =R,/ R,. Andthen R, =3R, implies
0,/0,=1/3.

(b) IDENTIFY and SET UP: The electric field at the surface of a charged conducting sphere is given in
Example 22.5:

pa Ll
4re, R
EXECUTE: For spheres 4 and B this gives
4= |QA|2 and E; = |Q”|2.
4reR, 4re,R;
EE |QE‘ 47[€0Rj 2 )
L= = =% | =|0y/ R /R =(1/3)(3)" =3.
E, [47:50R2E 0] |05/0,| (R/R;)* = (1/3)(3)

EVALUATE: The sphere with the larger radius needs more net charge to produce the same potential. We can write
E =V/R for a sphere, so with equal potentials the sphere with the smaller R has the larger E.

IDENTIFY: Apply conservation of energy, K, +U, =K, +U, .
SETUP: Assume the particles initially are far apart, so U, =0, The alpha particle has zero speed at the distance of

closest approach, so K, =0. 1€V =1.60x10""" J. The alpha particle has charge +2¢ and the lead nucleus has
charge +82e.
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EXECUTE: Set the alpha particle’s kinetic energy equal to its potential energy: K, =U, gives
k(2e)(82e) and e k(164)(1.60x107" C)?

r (11.0x10° eV)(1.60x10™ J/eV)
EVALUATE: The calculation assumes that at the distance of closest approach the alpha particle is outside the radius
of the lead nucleus.

IDENTIFY and SET UP: The potential at the surface is given by Example 23.8 and the electric field at the surface is

given by Example 22.5. The charge initially on sphere 1 spreads between the two spheres such as to bring them to
the same potential.

11.0 MeV = =2.15x10" m.

1 9
4re, R?’
(b) Two conditions must be met:
1) Let g and g, be the final charges of each sphere. Then ¢q, + g, = O, (charge conservation)

=L 2 _gE

EXECUTE: (a) E =
@ E, ' 4dre R

2) Let V; and V, be the final potentials of each sphere. All points of a conductor are at the same potential, so ¥ =V,.

G-~ 92 gnd then q,/R =q,/R,

V=V, requires that ——
4rme, R, 4rme R,

gk, =(Q—-q)R
This gives ¢, =(R /[R +R,]DQ, and ¢, =0, —¢, = Q1(1 —R1 MR +RD=0(R,/[R +R,)])

() V= 1 g 9 and V, = 1 4 _ 9 , which equals V] as it should.

4me, R, 4me(R +R,) 4rwe, R, 4me (R +R)
(d) E1=K=——QI . E2=£=—Ql .
R 4neR(R +R,) R, 4rneR,(R +R)

EVALUATE: Part (a) says g, =q,(R,/R,). The sphere with the larger radius needs more charge to produce the

same potential at its surface. When R =R,, g, =¢, =0, /2. The sphere with the larger radius has the smaller
electric field at its surface.

IDENTIFY: Apply V- V,= '[bE'df

kQ kQ rt
SETUP: From Problem 22.57,for r2R, E=—— .For r<R, E=—7% 4—3—3F
r ¥
EXECUTE: (a) »2R: E= k—Q =>V=- J‘—k—g—dr' = LY , which is the potential of a point charge.
Ia r

o

r 2 2 3
(b) r<R: E_Q 4——3— and V=— jEdr'— jEd/:k—Q- jpl R R\ _Kr o o
| R R R?

EVALUATE: At r=R, V= kTQ =0, V= ;Q The electric field is radially outward and ¥ increases as »

decreases.
IDENTIFY: Apply conservation of energy: E, =E; .

SET Up: In the collision the initial kinetic energy of the two particles is converted into potential energy at the
distance of closest approach.

EXECUTE: (a) The two protons must approach to a distance of 2r, , where r; is the radius of a proton.

E, = E, gives Z[E.mpvz} =k_e2 and vz\/ k(l_fOXIO ) —
2 r, 2(1.2x107° m)(1.67x10™" kg)
(b) For a helium-helium collision, the charges and masses change from (a) and
B k(2(1.60x107" C))*
N \/ (3.5x107"° m)(2.99)(1.67x107Y kg)
© K _3kT _mv e mV* _ (1.67x10™ kg)(7.58x10° m/s)’
2 2 " 3k 3(1.38x107% J/K)

m V' (2.99)(1.67x1077 kg)(7.26x10° m/s)’
3k 3(1.38x107 J/K)

=7.58x10° m/s .

=7.26x10° m/s.

=23x10°K.

T, = =6.4x10° K
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(d) These calculations were based on the particles’ average speed. The distribution of speeds ensures that there are
always a certain percentage with a speed greater than the average speed, and these particles can undergo the
necessary reactions in the sun’s core.

EVALUATE: The kinetic energies required for fusion correspond to very high temperatures.

IDENTIFY and SETUP:  Apply Bq.(23.20). Vet = v — Vand V- /= (= [E-d.
qr0 a
EXECUTE: (a) E= —a—V —a—Vj —a—Vk =2Axi + 6ij 2Azk
ox dy~ oz

0 0
(b) A charge is moved in along the z-axis. The work done is given by W =¢ JE kdz = q J(—ZAz)dz =+(Aq)z. .

2 20

-5
Therefore, A= W“‘z”’ = 6'0?><10 J >
gz (1.5x10™ C)(0.250 m)

(¢) £(0,0,0.250) = —2(640 V/m?)(0.250 m)k =—(320 V/m)k .
(d) In every plane parallel to the xz-plane, y is constant, so V(x,y,z)= 4x* + Az> —C, where C =34)*.
V+C

=640 V/m? .

X+t =

= R?, which is the equation for a circle since R is constant as long as we have constant potential on

those planes.
1280 V +3(640 V/m*)(2.00 m)®

> =14.0m’ and the radius of the circle
640 V/m

(e) V=1280V and y=2.00m,so x*+z* =

is 3.74 m.

EVALUATE: In any plane parallel to the xz-plane, E projected onto the plane is radial and hence perpendicular to
the equipotential circles.

IDENTIFY: Apply conservation of energy to the motion of the daughter nuclei.

SETUP: Problem 23.72 shows that the electrical potential energy of the two nuclei is the same as if all their charge
was concentrated at their centers.

EXECUTE: (a) The two daughter nuclei have half the volume of the original uranium nucleus, so their radii are

Ax107"
smaller by a factor of the cube root of 2: » = 74x10 7 m _ 5.9%10"° m

yE)

2 2 —19 2
k(46e)’ _ k(46)(1.60 X_}? S 4.14x107"' J. U =2K , where K is the final kinetic energy of each
2r 1.L18x107" m

nucleus. K =U/2=(4.14x10" 1)/2=2.07x107" J

(b) U=

10.0 kg
(236 u)(1.66x107 kg/u)
And each releases energy U, so E =nU =(2.55x10%°)(4.14x107" 1) =1.06x10" I = 253 kilotons of TNT .

(d) We could call an atomic bomb an “electric” bomb since the electric potential energy provides the kinetic energy
of the particles.

EVALUATE: This simple model considers only the electrical force between the daughter nuclei and neglects the
nuclear force.

(¢) If we have 10.0 kg of uranium, then the number of nuclei is 7 = =2.55x10 nuclei .

IDENTIFY and SET UP: In part (a) apply E = —aa—V . In part (b) apply Gauss's law.
v

2 2 2
EXECUTE: (a)For r<a, E=_8_V=_p0a —6Lz+6r—3 =P r2 .Forrza, E——a—V—O E has
or 18¢, a 3¢ |la a or

a
only a radial component because V depends only on 7.
2
(b) For r <a, Gauss's law gives E 4zr’ = 123 'I; OG[r rz }47”2 and
€ €|la a
[ palr+ dr : (r2 +2rdr)
€ 3¢, a 2
_ 2 2 2
Qs =0, _ pr)Azr® dr _ piadnr dr[_g% 2 2 1} and p(r)=&[3—ﬂ}=p{l~ﬂ}
€ € 3¢, 3 a

An(r? + 2rdr) = 4z (r* + 2rdr) . Therefore,

r+dr

a a
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(¢)For r=a, p(r)=0, so the total charge enclosed will be given by

! a 4r? 1 T
=4r r)ridr = 4n rr———\dr=dmp |- -—| =
) (_)I.p( ) Lo _[0|: 3a:| p0|:3 3a |,
EVALUATE: Apply Gauss's law to a sphere of radius » > R . The result of part (c) says that Q, ,=0,s0 £=0.

This agrees with the result we calculated in part (a).
IDENTIFY: Angular momentum and energy must be conserved.

SETUP: At the distance of closest approach the speed is not zero. E=K+U . ¢q,=2¢, q,=82e.

EXECUTE: mvb=mv,r,. E =E, gives E = %m +—2 ki, . E,=11MeV =1.76x10"2 I. r, is the distance of
r2
2
2] we find E =E1b_2+% .

r, r r.

closest approach. Substituting in for v, = vl[
2 2

(E)r," —(kq,q,)r,—Eb*=0.For b=10"m, r,=1.01x10"? m. For 5=10" m, r,=1.11x10"" m . And for
b=10"m, r,=2.54x10" m

EVALUATE: As b decreases the collision is closer to being head-on and the distance of closest approach decreases.
Problem 23.82 shows that the distance of closest approach is 2.15x10™* m when b=0.

IDENTIFY: Consider the potential due to an infinitesimal slice of the cylinder and integrate over the length of the

cylinder to find the total potential. The electric field is along the axis of the tube and is given by F = —a—V

ox
SETUP: Use the expression from Example 23.11 for the potential due to each infinitesimal slice. Let the slice be
at coordinate z along the x-axis, relative to the center of the tube.
EXECUTE: (a) For an infinitesimal slice of the finite cylinder, we have the potential

dv = kdQ = k0 dz . Integrating gives
\/(x—z)2+R2 L J(x—z)+R?
_kQ dz _k

where u = x — 7 . Therefore,

_Jzﬂ(.x Z) +R2 _L/'!.X\/u +R2
Ve kQ V(L/z X+ R +(L/2—x%)

JL/2+ 2 + R —L/2-x
(b) For L<<R, V ~*2} {V(L/z_x) +R2+L/2_x} K {Vx —xL+R*+L/2— x}

L | J(L/2+x?+R -L/2—x Ve +xL+ R —L/2—x

V:k [,/1 AR+ 2) +(L)2- /R + 2 1 [1—xL/2(R2+x2)+(L/2—x)/\/R2+x2}
= .

1+ 3L/(R? + x%) +(=L/2— x)/NR® + x* 14 xL/ 2(R? + %) + (~L/2 - x)/R* + *

1 on the cylinder axis.

v-K 1+L/2“R2+x ln[1+7 L}—ln{l— ,—L }
L 1_L/2 'R2+_x 2 R2+x2 2 R2+_x2 .
ko 2L ___k0 , which is the same as for a ring.

T LoJe+R (PR
ov  2KQ((L-207 +4R* —(L+207 +4R’)

(c) Ex = =
ox JL-2x) +4R* (L +2x)* + 4R

EVALUATE: For L << R the expression for E_reduces to that for a ring of charge, as given in Example 23.14.
IDENTIFY: When the oil drop is at rest, the upward force |q| E from the electric field equals the downward weight

of the drop. When the drop is falling at its terminal speed, the upward viscous force equals the downward weight of
the drop.

. . . 4
SETUP: The volume of the drop is related to its radius r by V = gﬂr3 .

3 3
EXECUTE: (a) Fg=mg=4%pg. F,=|g|E=|q|V,s/d . F,=F, gives |q|=4?”p"/gd.

AB
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3
(b) 47? pg=6rnrv, gives r= Igm‘ . Using this result to replace r in the expression in part (a) gives
P8

3
g =782 O | _yep d v
3 Vs |[N2p8 Vs V2pP8

10°m |(1.81x107° N-s/m?)*(1.00x10~ m/39.3s)’
9.16V 2(824 kg/m*)(9.80 m/s?)
excess electrons.

(©) |g|=187

=4.80x107" C=3e . The drop has acquired three

. J9(l.81x10‘5 N-s/m?)(1.00x107° m/39.35)

=5.07%107 m=0.507 ym .
2824 kg/m)(9.80 m/s?) m #m

dzr’ . .
EVALUATE: The weight of the drop is [ igr ] pg =44x10""° N . The density of air at room temperature is

1.2 kg/m®, so the buoyancy force is p, Vg =6.4x10™® N and can be neglected.
y y pall'

v, +m,v.
IDENTIFY: v, = LR ]
m +m,

k
SETUP: E=K,+K,+U ., where U =292
r

(6107 kg)(400m/s) + (3x107° kg)(1300 m/s)

EXECUTE: (a) v, = - — =700 m/s
6.0x107 kg +3.0x10™ kg
1 k 1 . . -
() E, = Enqvlz + %mszz + ﬂ—a(ml +m,)v2 . After expanding the center of mass velocity and collecting like
r
terms E,, = 1_mm, [v2+v}2—2vy,]+ kg, 1 4, —v,) + ka9, .
2m +m, r 2 r
1 _ k(2.0x107° C)(-5.0x107° C)
©) E, =—=(2.0x107 kg)(900 m/s)’ + =-19]
© Ey=5( £)(900 m/s) 0090
(d) Since the energy is less than zero, the system is “bound.”
k
(e) The maximum separation is when the velocity is zero: —1.9J = i1 gives
r

__k(2.0x10° O)(-5.0x10° ©)
-1.917
(f) Now using v, =400 m/s and v, =1800 m/s , we find E_ =+9.6J . The particles do escape, and the final relative

- 2K, 209.61)
velocity is ]v1 —v2|= —= = m

=0.047m.

=980m/s.
U

EVALUATE: For an isolated system the velocity of the center of mass is constant and the system must retain the
kinetic energy associated with the motion of the center of mass.



