
- **E 001:** Duas pequenas bolas condutoras idênticas, de massa m e carga q, estão suspensas por fios não-condutores de comprimento L, como mostra a figura. Suponha θ tão pequeno que tan θ possa ser substituída por sen θ com erro desprezível.
- (a) Mostre que, no equilíbrio vale

$$x = \left(\frac{2k\,q^2L}{mg}\right)^{1/3}$$

Nesta fórmula x é a distância das bolas, $k \approx 9 \times 10^9 \,\mathrm{N}\,\mathrm{m}^2\mathrm{C}^{-2}$ é a constante de proporcionalidade na lei de Coulomb e $g \approx 9.81\,\mathrm{m}\,\mathrm{s}^{-2}$ a aceleração da gravidade. (b) Sendo $L = 120\,\mathrm{cm}$, $m = 10\,\mathrm{g}$, e $x = 50\,\mathrm{mm}$, qual é o valor de q?

E002: Duas cargas pontuais de valor q estão posicionadas nos pontos P1 e P2, cujas coordenadas num sistema de coordenadas cartesianas são $\langle x_1 = 0, y_1 = a, z_1 = 0 \rangle$ e $\langle x_2=0, y_2=-a, z_2=0 \rangle$. Uma carga Q está no ponto P cujas coordenadas são $\langle x_P = L, y_P = 0, z_P = 0 \rangle$, com L > 0. (a) Use a lei de Coulomb para calcular a força que atua sobre a carga Q. (b) Calcule esta força supondo agora que $q = 50 \,\mathrm{nC}$, $Q = 200 \,\mathrm{nC}$, $a = 1 \,\mathrm{cm} \,\mathrm{e}$ $L = 4 \,\mathrm{cm}$.

E 003: Considere um sistema de três cargas: q_0 na origem de um sistema cartesiano de coordenadas, q_1 no ponto P_1 com coordenadas $\langle x_1 = a, y_1 = 0, z_1 = 0 \rangle$ com a > 0, e q_2 no ponto P_2 com coordenadas $\langle x_2=0, y_2=a, z_2=0 \rangle$. (a) Calcule o campo elétrico no ponto P com coordenadas $\langle x_P = a, y_P = a, z_P = 0 \rangle$. (b) Calcule o módulo deste vetor para o caso de que $q_0 = q_1 = 1 \mu C$, $q_2 = -2 \mu C$ e a = 10 cm.

E 004: Duas cargas positivas pontuais com valor q são colocadas nos pontos P1 e P2, cujas posições são dadas pelos vetores posição $\vec{r_1} = 0\hat{x} + 0\hat{y} + 0\hat{z}$ e $\vec{r_2} = L\hat{x}$ com L > 0. $\langle \hat{x}, \hat{y}, \hat{z} \rangle$ é uma base ortonormal associada ao espaço físico do referencial do laboratório.

- a) Calcule o campo elétrico em um ponto P genérico (isto é, um ponto qualquer) sobre a mediatriz dos pontos P1 e P2 (caso você não saiba o significado de mediatriz, então consulte um livro de geometria ou a Wikipídia).
- **b)** Ao colocarmos uma carga Q sobre o ponto P, qual força ela sentirá?
- c) Vamos agora alterar a distribuição das cargas da seguinte maneira: a carga em P1 é mantida no mesmo lugar e a outra carga é levada até o ponto P3 com coordenadas $\langle 0,L,0 \rangle$ ou seja, cujo vetor posição é $\vec{r}_3=L\hat{y}$. Isto significa que os vetores \vec{r}_1 , \vec{r}_2 sofreram uma rotação de $\pi/2$ no sentido antihorário com eixo de rotação no eixo z. Escreva o campo elétrico desta nova configuração de cargas também sobre um ponto qualquer da mediatriz do segmento dos pontos P1 e P3. (Observe que não é necessário fazer cálculo algum).
- d) Discuta o que ocorre com o campo elétrico quando uma distribuição de cargas é girada.