

E 21: Matéria eletricamente carregada escoa $\vec{v} = 5 \text{ms}^{-1} \hat{i} + 3 \text{ms}^{-1} \hat{j} - 2 \text{ms}^{-1} \hat{k}$. Um medidor de corrente elétrica de área $A = 1 \text{cm}^2$ mede uma corrente de 10^{-3}A quando posto no fluxo com orientação na direção \hat{i} como mostra a figura. Calcule a densidade de carga desta matéria e o módulo da densidade de corrente $|\vec{j}|$.

E 22: Um fio de cobre (resistividade_(T=20°C) = $(1,70\pm0,02)\times10^{-8}$ Ωm , coeficiente térmico da resistividade = $+3.9\times10^{-3}$ K⁻¹) numa temperatura de 20°C tem um comprimento de 200 m e um diâmetro de 1,2 mm. Calcule a resistência deste fio. Sabese que o coeficiente linear de dilatação térmica do cobre vale 17×10^{-6} K⁻¹. Calcule a resistência do fio quando este for aquecido até uma temperatura de 30°C. Compare a contribuição para a mudança de resistência devida ao coeficiente térmico da resistividade com a contribuição devida a mudanças geométricas.

E 23: Duas baterias de força eletromotriz 10V e 1V e resistência interna desprezível estão ligadas no circuito da figura ao lado. Calcule as corrente I_1 e I_2 . Calcule a taxa de transferência de energia do campo elétrico para cada um dos elementos do circuito. Repare nos sinais destas taxas! Quais dos elementos recebem energia?

E 24: Uma resistência de chuveiro elétrico é construída de tal maneira que ela entrega 4 kW se ela for ligada numa fonte de 127V. Na instalação de uma casa o chuveiro é ligado na rede de 127V através de fios de cobre de 1 mm de diâmetro e 2×20 m (ida e volta) de comprimento. Calcule qual é a potência térmica que esta resistência irá entregar à água, qual é a potência tirada da rede elétrica e qual é a potência gasta inutilmente na fiação na parede. Calcule como seriam estes valores se tivéssemos 220V na instalação com um chuveiro que entrega 4 kW quando ligado a 220 V. Dado: resistividade do cobre = $0.0172 \Omega \text{ (mm)}^2 \text{ m}^{-1}$.

E 25: Diferentes resistores são ligados numa fonte. Variando os valores das resistências, criam-se pares de valores de corrente de voltagem que podem ser representados num gráfico que mostra as voltagens no eixo horizontal e as correntes no eixo vertical. Esboce o gráfico correspondente para o caso de: (a) uma fonte de voltagem ideal, (b) uma fonte de corrente ideal, (c) uma pilha voltaica real.

E 26: Você possui um amperímetro muito sensível cujo ponteiro se move até o fundo da escala quando se injeta nele apenas $10\mu A$. A resistência interna deste instrumento vale $0,4~\Omega$. Determine os elementos que se precisam colocar adicionalmente neste medidor para transformá-lo num voltímetro de fundo de escala $V_F = 10\,\mathrm{V}$ ou num amperímetro com fundo de escala $I_F = 100\,\mathrm{mA}$.

E 27: Um voltímetro real pode ser representado por uma combinação de um voltímetro ideal e um resistor. Desenhe este circuito equivalente que corresponda a um voltímetro real.