1.2 Mathematical language

The mathematical language is much simpler thannatural languages, but in many
respects it is similar. One handles symbols, wioich might call nouns or names, but
which are technically calledexpressions, and these symbols represent objects.
Expressions can be combined, according to spesifitactic rules, to form other
expressions. Moreover, expressions can be combiigd special symbols to form
statements. And statements can be combined to form otheerstants. To be precise,
two different strings of symbols may representsame statement. Therefore one calls
the strings of signs that state something withexsic name; they are callddrmulas.

So a formula makes a statement, but two differemhféilas may correspond to the same
statement, very much the same way as two wordscoragspond to the same notion.

Usually one uses letters from some alphabet as s:afitbe represented objects. As the
number of letters available is small, usually oetger is used as a name of some object
only temporarily. Later, on another occasion, thee letter may be used to represent a
different object. For instance, in the previoustisecwe used the symbolR,” to

denote a certain value of heating power. Of cousgeshall not restrict the use of that
symbol to represent that heating power for the oésbur lives. This economy of

symbols has the disadvantage that the scope omadyhas to be declared or made
clear somehow. So the author of any mathematedl has to pay attention to that
question and make the scope of a symbol cleardadhder. Generally the use of a
letter as a name of an object is announced by sutnoelucing sentence. Very often one
finds sentences like the following one: “ L& be a ...... " . Such symbol introducing

sentence automatically terminates any previoutifeat symbol.

Sometimes a letter may represent an object thstilisunspecified. It may be that the
type of object is specified but the actual objésIf is unknown or may vary depending
on other circumstances. In this case the lettecaited avariable. If the symbol
represents a definite object it is callecbastant name'.

Frequently two expressions represent the sametoltijehbis is the case one writes the
symbol “=" between the two expressiénSo the sequence of symbola=b tells us
that the symbols &” and ‘b” are two different names of the same object. ésdaot
say that the symbolsa® and b” are the same! It may seem superfluous to explain
the use of the symbol “=". But a careful analysisnathematical mistakes committed
by university students reveals that many of thestakes are due to misunderstanding
the meaning of the symbol “=". It is unfortunateathmany computer languages (C,
FORTRAN and others) use the symbol “=" with a diffiet meaning.

a=b is a statement, or more precisely, a formula.ah ®e either true or false

depending on the objects represented by the symhblsand ‘b” . In some cases one
might not be able to know whether it is true oséal

So far we have not introduced numbers and algebpecations. Nevertheless, we shall
use an example of elementary algebra to explairerdetails of equality. The symbols
“2” and “5” are constant names. Lex be a numeric variable. Then the string of
symbols 2+x=5 is a syntactically correct formula. With the rulek algebra one

! In text books of mathematical logic such symboéssimply called “constants”. But in physics and
other quantitative sciences the word “constan#lls® used with a different meaning. Therefore wadlsh
use the term “constant name”.

% The physician and mathematician Robert Recordednted the symbol “=” in 1557.



concludes thak = 3. But this latter sequence of symbols doesmean that nowx is a
constant namex is still a variable. Both equalitie2+x=5 and x=3 can be true or
false depending on what number represents. On the other hand one could, for some
reason, introducex as an abbreviation of the number 3. In this case writes

x = 3. Then x is a constant name. The subscrigef” is an explicit declaration

def.
that the formulax=3 is true. Sometimes one wants to use such abbi@wabnly
temporarily and sometimes they shall be valid f@reWe shall distinguish these cases
and write ‘Def” under the = sign if the abbreviation is valid &ver and def if it is
a temporary abbreviation.

*xx = means *** is a permanent abbretan of .... (1.2.1)
er.

and

flal = means *** is a temporary abbreian of .... (1.2.2)
er.

Accordingly the symbols on the left hand side o th sign become temporarily or
permanently constant names if the right hand side ¢onstant name. If the right hand
side is a variable, the left hand side will condrauvariable in either case.

The logical contrary of a=b is written as a#b. So "a"#"l' is always true

(unless you need new spectacles), because the yarbdaifferent and the strings with
quotation marcs are names of the symbols. But b may be true or false depending

on the objects represented by the symbals “and b” . The statementa# a is
always false.

The construction of a#b starting from a=b is an example of formation of
formulas from other formulasa # b is the negation of the original formula. In getera
the negation of a formulad will be writtenas-®.So - a=b and aZb make
the same statement. The negation of a formulafisetkby its truth values: @ is true

if and only if ® is false and-® s false if and only if ® is true. One may show
these cases in a table of truth values:

P P

true false

false | true

Table 1.2.1Truth values of negation
Other constructions of new formulae from old onembine two formulae to form a
third one: If ® and W are formulae thend W, o 0P, P=W andd = WY are

also formulae. Table 1.2.2 gives the spoken Engiames of these formulae and the
truth values that define them.



Table 2.2.2Znglishnames and truth values of combined formulae.

(o) W O ® Oy P Y (O JPY
® orV¥ ® and¥ | @ impliesW¥ ® andW¥ are
equivalent
false false false false true true
false true true false true false
true false true false false false
true true true true true true

It would have been enough to introduce odly1¥ and the negation. The statement
@ Oy is in fact the same as~(-®0-W) and ®= WY is the same as¥ 0~ ®

(show this!). Finally® = ¥ is the same as(® = W) (¥ = ®). Note that here

parentheses were used as additional symbols ofermatiical language. In the case of
—|(—|<DD—| LIJ) they tell the reader that the leftmost negatiots aan the formula

-®0-¥Y and not only on the formula -®. The polish mathematician Jan

t ukasiewicZ invented a notation that does not need parentHesiis notation, which
iIs known aspolish notation the symbols t1”, “ ", “=", “ « ” are written not
between the two formulae that they combine butramtf of them. So, for instance,

= (- ®0-¥) would have the form~ 0= ®- WY, whereas (-~ ®)0- ¥ would be

written as O--®-W. This is an extremely useful notation in formalicsés of
mathematical language, but for most people it Btdard to read and to understand.
Therefore we shall use the conventional notatiohickv makes the introduction of
parenthesis necessary.

There exist combinations of formulae that resulaiformula that is always true. For
instance the formula(CD D(CD:> lP)):> W is always true independent of what the
formulae ® and W might be. Such combined formulae that are alwaye t

independent of the nature of the formulae that appe the combination are called
tautologies There also exist formulae that are always falder instance

(-w) D(d) O(e= LP)) or ® [1- ®. These are callecbntradictioné.

One says that the symbolg™ and ‘b” appearin the formulaa="b. The symbol &”
appears in the formulaa=a. Whether a=b is true or false depends on which
objects are represented by’ and b” . Despite the fact thal" appears ina=a,
this formula is always true. Then we say tleat a is true_for alla. This will be written
as a new formula, which is derived from= a using a special symbol; we shall write it
as [a:a= a.

Let ® be a formula. If the symbohk* designates a variable then one can form a new
formula

$* 21 December 1878, 113 February 1956

* The word “contradiction” is frequently used iretBo called “dialectic logic”. The reader had hbette
steer well clear of this mental quagmire! As aaraple we cite Hegel: "ldentity is the identity dentity
and non-identity." An early precursor of that sofffogic is due to Feliciano Silva. Miguel de Centes
cites him to explain the sources of madness of Qaijote: “La razén de la sinrazén que a mi razén s
hace, de tal maneira mi razén enflaquece, que eatmrme quejo de la vuestra fermosura”.



Oa:® (1.2.3).

The meaning of this new formula is: “The formuia is true for alla”. This new
formula may be true or false. For instance the tdanila:a=a is true, but the

formula Oa :a=b is false because, whatever the symbailrhay stand for, there is
always somea different from the objecb.
The symbol ‘11" is alogical quantifier Apart from thisall-quantifier it is convenient to

introduce arexistence-quantifier f1”. The meaning of this can be defined in terms of
the all-quantifier and negation by saying that

(a:® Is an abbreviation of -[a - ® (1.2.4).
In the same spirit of = and = we shall write the statement (1.2.4)
formally as
[(B:® - -Ha:= & (1.2.5)

Def.

In English one pronounces[&: ®” as: “there exists aa such that ® is true”. Such
formula can be true or false. For instancea a=Dbis true and[a:a# a is false. As
one advances in pure mathematics one recognizem#thematical existence may be a
very formal matter. Sometimes the existence oflgaab is affirmed that one will never
be able to get hold of and Martin Heidegger woud@ehgood reasons to criticize such
existences.

The symbol &” appearsin the formulasa=b and [a :a= b. But the appearance of
“a” is totally different in these two cases. In b@hmulas a is a variable. Ina=b

we may substitute this variable by a constant nantkthis substitution results in a new
and different formula. For instance, we may subtita” by “Albert Einstein” This
latter sequence of symbols is a hame of a defwhject, which is also known as the
inventor of the theory of relativity. So it is angtant name. Depending on what “
stands for, the resulting statemeflbert Einsteinr= & may be true or false, but it is a
meaningful statement. On the other hand if we $wibsta by a constant name in
Oa:a=b we get simply a sequence of symbols that does pastain to our

mathematical language. For instanté, $§bis not a syntactically correct formula.
The same situation prevails with formulae contagremistence-quantifiers.

An appearance of a string of symbols that reprgsantonstant name or can be
substituted by a constant name is calléaba appearanceAn appearance of a string of

symbols that cannot be substituted by a constamiena called éound appearance
Formulas without freely appearing variables aréedallosed formulas

Here we discussed only appearances in formulaslabert we shall see that free and
bound appearances can also refer to expressiomsexample X” appears in the

expression J'lzln(x) dx in bound form and inn(x) it appears freely. Variables that
appear in bound form are often calthdmnmy variables

A letter that appears in bound form can be sulietitby any other letter that does not
appear otherwise, and this substitution does nangh the statement. So, for example,
Oa:a=b and Ox :x=b are exactly the same statement. But we may né¢dgega”

by “b”, this would change the statement. The scopebafuad variable is automatically



limited to the formula that follows immediately @ftits introduction through the
quantifier. So in a long sequence of symbals..... [k (x: b x= (j Ceeeeel the scope

of “X” starts at the first arrow and ends at the seaoral It would be perfectly legal to
use X’ again in the rest, which is denoted with dotsd dhere %’ would have a
different meaning. However, it is wise to avoidstim order to facilitate legibility. It is
easy to avoid such double occurrence of letteraussthe bound letter can be changed.
So if one wants to use arx™ in the symbols, which we abbreviated with thésj@ne

had better write the part between the arrows irfatra Oy:(y= b0 y= d.

The scope of bound variables is especially impondren a statement contains several
logical quantifiers. The scope of/™in the formula

[k Oy:® (1.2.6)

is the range indicated by the two arrowg’ is being introduced by means of the
existence quantifier outside this range, wherg’ tfas no meaning. Therefore the
existing object x cannot depend ory. It serves for aly. On the other hand in the
statement

Oy Ox: @ (1.2.7)

the symbol X’ is introduced within the scope ofy™and therefore it may be that every
object y has got a different object such that® holds. Sox may depend ory. To
make this clear one sometimes writes formulae ssdi.2.7) also in the form

Oy Ox, : ® (1.2.8).

The statements (1.2.7) and (1.2.8) are the saraentlex y’- is not necessary, but it
may help the reader.

So far we have explained very basic notions. Ewenstmple sign “=" has been found
worthy to be explained. If you try you will discavéhat the more basic a notion is,
more difficult it becomes to explain it. Now one ynask: what do “true” and “false”
mean? As long as one stays in pure manipulati@rimigs of symbols one may answer:
“They do not mean anything. They are just two mg&ymbols that are associated to
formulas.” The situation will however change once use the mathematical language
to describe something. Then “true” and “false” vgdin meanings. At least these signs
are related to the meaning of “=". Attributing “$af’ to the statemend=a is quite

different from attributing “true” to that statemerit CD[A] is a formula in which an
expressionA appears freely anotD[A/' B] a formula that one obtains fron®[ Al

by substitutingB in some of the places wheke appears one has the right to draw the
following conclusions:

If ®[A]is true andb| A/ B] s false then conclude thag Bis true (1.2.9)

and
If A= Bis true and®[ A is true, then concludtatltb[ A/ B] is true (1.2.10)

Further, when one constructs a mathematical themrg, postulates that certain basic
formulas are true. The truth of these basic statésnleas a defining meaning. These
statements are part of the definition of the thedityey are called the axioms of the
theory. If one then applies such a mathematicalrtheo the real world the “true” and



“false” get further concrete meaning. If, for inste, the theory predicts that a building
will withstand an earthquake of a given magnituddaése” of such statement has a
very definite and dramatic meaning.

From the axioms of a mathematical theory one daducethe truth values of other
formulas according to certain rules. If the forneulap,, @, ....,®, are known to be

true one has the right to conclude th#t is true if (&, 0®, 0.0, )= W is a

tautology. So for instance, if we know thab is true and that® = ¥ is true, we
have the right to conclude tha® is true. Such deductions of truth, which ultinhate
start from the axioms of a theory, are callegraof. By “ultimately” we mean that one
could start from the axioms, but in practice on# wary often start from formulas that
have previously been proven starting from the asiohine proofs will inform us about
the truth of formulas. If the system of axioms dahaory is consistent it should never
occur that a formulad® as well is its negation~ @ follow from the axioms.

If one wants to prove a formula that has the fodn—= W one may start with the
assumptiornthat @ is true because P happened to be false the formuld = ¥
would be true anyway. But one must not start with dssumption thatV _is true This

iIs a mistake very often committed by beginné#s.might be false and from a false
statement one can correctly deduce anything ewenstiatements. Such deduction will
not show thatb = W is true. What can be assumed is thit is false. If one is able to
deduce from this assumption and from the axioms dhas false too one has actually

shown that ®=W is true. This is so because-W=-®)=(®=>W) is a
tautology.

In order to prove formulas that have the foiffa:® one starts “leta be given
arbitrarily” and in the remainder one must not assuany thing special aboua. In
order to prove formulas liked’a: ® one may try to find or construct am that satisfies

@ . This constructive sort of prove of existencenis most valuable one. But sometimes
it turns out to be impossible. Then one might shioat the assumption thdfla: = ® is

true leads to a contradiction.

Naively one might expect that the provable formwdes exactly the true ones. But this
is not the case. Kurt Friedrich Gétshowed in 1931 with his famous Incompleteness
Theorem | that a language sufficiently rich to fotede arithmetic cannot have any
consistent rules of deduction that permit to prallelosed true formulas of arithmefic.
That means there are always closed formuths such that there exists no proof that
shows that @ is true neither is there a proof that @ is true. One of the two
statements,® or - ®, is supposedly true and the other one is false, Wwe shall
never know which one. In his second Incompleterigs=rem Godel further showed
that within a given theory with the language oftttieeory it cannot be shown that the
system of axioms is consistent. These theoremsausethat human cognition has very
profound limitations.

> *April 28, 1906, T January 14, 1978
® For more details see Joseph R. ShoenfiMdthematical LogiAddison-Wesley Publishing Company
(1967) ISBN 0-201-07028-6.



