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1.3 Set Theory I  

As long as the terms of a mathematical theory are names of concrete objects – as 
concrete as mothers breast, the very first object that received a name in human 
languages -  there is not much danger of formulating anything absurd. But on the other 
hand a language that deals only with these concrete things will not tell us much 
interesting stuff. In order to advance to more sophisticated utterances one has to admit 
new mental objects. 

One may form a new mental object from given objects by grouping them. This new 
object is called a set. So for instance, if a, b,  and c are objects the totality of these 
objects is a new object which is usually written putting the three names of the objects 
separated by commas in curly brackets: { }, ,a b c . When one introduces this sort of new 

object a new type of statement is absolutely natural: the statement that a given object 
pertains to a set. So if  M  is a set  and  a  an object, this object can be part of the set  M . 
Such statement is written with the formula  

 a M∈  (1.3.1) 

and in English one says  “a is an element of  M”. The statement that a is not an element 
of  M  is written as 
 a M∉  (1.3.2). 

The symbol “∈” has been introduced by Giuseppe Peano1 to abbreviate the Greek word 
εσ τι  (is).  

When one introduces a new kind of object one has so say some words concerning the 
equality sign. It is not that our explanation of the symbol ”=” has to be changed, but a 
discussion of the meaning of that symbol will actually be part of the definition of the 
new object. What do we actually mean by “the totality of the objects a, b and c”? Is the 
“totality of a, b and c”  the same thing as the “totality of the objects b, a  and c”?  For 
sets one defines: 
 
Two sets  M  and  N  are  equal if and only if all elements of  M  are also elements of  N 
and all elements of  N  are also elements of  M.  

We may write this definition as a formula: 

 ( ) ( ) ( )( ).
set set : :

Def
M N x x N x M M N∀ ∀ ∀ ∈ ⇔ ∈ ⇔ =  (1.3.3) 

The formula (1.3.3)  is the first axiom of set theory. It is called extensionality axiom. 
Note that we have modified our notation of logical quantifiers a little bit. In the 
quantification of the variables  M and N we express that these variables are names of 
sets. The variable x may be any kind of object. It may also be a set.  

Actually it would have been enough to write a simple implication in (1.3.3) because the 
other direction " "⇐ , which means the implication  ( ):N M x x N x M= ⇒∀ ∈ ⇔ ∈ , 

is a consequence of the general rule (1.2.7). 

An immediate consequence of this definition is that { }, ,a b c  and  { }, ,b a c  are the same 

set. So the order of writing the elements does not matter.  

                                                 
1* 27 August 1858,  †20 April 1932 
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It is convenient to define another type of statement that involves two sets. One says that 
a set  N  is a subset of a set  M  if  and only if all elements of  N  are also elements of   
M.  This statement is abbreviated with the sequence of symbols  N M⊂ .   

 ( )is an abbreviation of :N M x x N x M⊂ ∀ ∈ ⇒ ∈  (1.3.4) 

Then one has N M=  if and only if  N M⊂  and  M N⊂ .  

The construction of a set by explicit presentation of objects is a rather primitive way of 
defining a set. It is much more elegant and interesting to specify the objects that pertain 
to a set by a description of their properties. This can be done with the help of 
statements. So one may define a set of all objects for which a certain statement is true. 
For instance, one may think of the set of all politicians that have been murdered. So 
Julius Caesar would be an element of this set. However, this way of defining a set 
contains certain dangers. The theory of sets had been invented by Georg Ferdinand 
Ludwig Philipp Cantor2 in the 1870s in order to study certain infinite objects. Friedrich 
Ludwig Gottlob Frege3 combined the theory with mathematical logic. The theory was 
accepted by very important mathematicians (for instance Julius Wilhelm Richard 
Dedekind4 and David Hilbert5) and violently rejected by others (Leopold Kronecker6 
and Jules Henri Poincaré7). These controversies depressed Cantor considerably. An 
argument raised by Bertrand Arthur William Russell8, which is now known as Russell’s 
Paradox, raised even more doubts concerning the validity of set theory. Today set 
theory can be formulated in a sound and safe way and it is one of the cornerstones of 
modern mathematics. Russell’s Paradox concerns exactly the definition of sets by 
means of statements. It goes as follows. Let  RussellR  be the set whose elements are all 

sets that are not their one element. So  RussellR   consists of all sets  x  such that the 

statement  x x∉   is true. Now consider the following question: is Russell RussellR R∈  ? If 

we assumeRussell RussellR R∈  then, by definition of  RussellR , it should be a set that is not its 

own element, which contradicts the assumption  Russell RussellR R∈ . If, on the contrary, we 

assume Russell RussellR R∉  then, by definition of  RussellR  it should be an element of  RussellR , 

which contradicts the  assumption Russell RussellR R∉ . So whatever we assume as true, we 

end up with a contradiction.  
 
This situation seems to show that the idea of sets is flawed. But a closer look at the 
original idea of set shows that Russell’s argument is not valid. We started the second 
paragraph of this section with the sentence: “One may form a new mental object from 
given objects by grouping them.” The objects that are grouped to form a set have to be 
existing objects. Once a set is defined this is a new existing object. But the formation of 
a set is always based on previously existing objects. Therefore sets have to be thought 
of as organized in a hierarchy. This hierarchy starts with some concrete objects, which 
are not sets. From these, which were called “urelemente”, here we shall call them basic 
elements, one may safely form any kind of sets. These sets are new mental objects, 

                                                 
2* March 3 [O.S.  February 19] 1845. †January 6, 1918 
3 *8 November 1848,  †26 July 1925 
4 *October 6, 1831,  † February 12, 1916 
5 January 23, 1862 †February 14, 1943 
6 *December 7, 1823, † December 29, 1891 
7 *29 April 1854, † 17 July 1912 
8 *18 May 1872, † 2 February 1970 
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which together with the basic elements can again be grouped to form sets of a higher 
sphere, which again may be grouped to sets of an ever higher sphere and so on. Ernst 
Friedrich Ferdinand Zermelo9 and Adolf Abraham Halevi Fraenkel10  formulated 
axiomatic rules that permit formation of sets without the danger of building any 
monsters like RussellR . 

Before we explain these axioms a note on notation is appropriate. Formulas of the type 
a b∈  or a b∉  were declared to be syntactically correct only in the case where  b  is a 
set. This may cause inconvenient situations. We shall extend the notation to the case 
where  b  is not a set. If  b  is not a set we define a b∈  to be false for all a  and  a b∉   
to be true for all a.  

First of all, the initial idea that one may join given things to form a set is expressed with 
the pairing axiom. For any objects a and b there exists a set that contains exactly a and 
b as elements.  

 ( ) ( )set :a b M x x M x a x b∀ ∀ ∃ ∀ ∈ ⇔ = ∨ =  (1.3.5) 

With the extensionality this set is uniquely determined by a and b. It is written as  

{ },a b . Note, that one may also have  a b= . So for any  a  one also has a set  { }a , 

which is uniquely determined by  a. The case of more than two objects will be indirectly 
taken care of with the remaining axioms. 

The formation of sets by means of a statement is restricted to subsets and is expressed 
by the Aussonderungsaxiom11 or  axiom of restricted comprehension or subset axiom. 
It tells us that for any set  M  and any formula  Φ   that contains the free variables  M, a, 
b, …, x  but that does not contain the variable  S  freely there is a set  S  (which depends 
on a, b, …) whose elements are also elements of  M  and that satisfy the formula  Φ . 

 ( ) ( ) ( )( )set ..... set :M a b c S x x S x M∀ ∀ ∀ ∀ ∃ ∀ ∈ ⇔ ∈ ∧ Φ  (1.3.6) 

Extensionality implies that this set is uniquely determined by M , a, b, … and by the 
formula  Φ . Usually this set is written as { }|x M∈ Φ . One special case, which at first 

sight seems meaningless, but which determines a frequently used set, is obtained with 
the formula  x x≠ . This gives a set  { }|x M x x∈ ≠  that contains no elements. By 

extensionality this empty set is unique. It is usually abbreviated with the symbol  ∅ . 
Another important application of the subset axiom is the definition of the relative 
complement. If M and  N are sets one defines the complement of N relative to M as  

 { }
.

\ |
Def

M N x M x N= ∈ ∉  (1.3.7) 

 

 

                                                 
9 *1871, †1953 
10  *February 17, 1891,  † October 15, 1965 
11 From German aussondern = to separate out  
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The union axiom tells us that for any set  M  there is a set  M∪  whose elements are the 
elements of elements of M.  

 ( ) ( ) ( )( )( )set set : :M N x x N a a M x a∀ ∃ ∀ ∈ ⇔ ∃ ∈ ∧ ∈  (1.3.8) 

This set is unique and it is usually written as  M∪  and called the union of M. Especially 

if  M  has two elements each one being a set  { },M A B=  ( A and  B  sets) the union 

M∪  consists of all objects that are elements of A or B. This set is usually written as  
A B∪ : 
 { }

.
|

Def
A B x x A x B∪ = ∈ ∨ ∈  (1.3.9) 

If  M  is a set whose elements are all basic elements, that is no element is a set, the 
union of M is empty: M = ∅∪ . The union axiom together with the pairing axiom 
permits one to aggregate more than two elements in an explicit construction of a set. So 
for instance, to build the set  { }, ,a b c  one first uses the pairing axiom to build the sets 

{ }a  and  { },b c , then one uses the pairing axiom again to form  { } { }{ }, ,a b c  and finally 

the union of this set is the desired { }, ,a b c . 

The existence of the union had to be formulated as an axiom. When one replaces the 
“ ∨ ” by an “∧ ” in the formula (1.3.9) one gets a set whose existence can be proven. 
This set is called the intersection of the sets A  and B and it is written as A B∩ : 

 { }
.

|
Def

A B x A B x A x B∩ = ∈ ∪ ∈ ∧ ∈  (1.3.10) 

The existence is a consequence of the subset axiom. One can also define the intersection 
of the elements of a set: 

 ( ){ }
.

| :
Def

M x M a a M x a= ∈ ∀ ∈ ⇒ ∈∩ ∪  (1.3.11) 

If the set  M  contains basic elements (urelemente) then M∩  is empty.  

From an object  a  we can form a set  { }a . But is this new object really different form  

a? In the case that  a = ∅  we can actually show that it is different. The set { }∅  has one 

element, which is the empty set. Therefore { }∅  cannot be the empty set, which by 

definition does not have any element. So { }∅ ≠ ∅ . But for the general case we have no 

argument that shows { }a a≠ . This statement can be shown to be true with the help of 

the axiom of foundation or regularity axiom. The idea behind this axiom is the 
following: We may find ever higher and higher levels of hierarchy among the elements 
of a set. So for instance we may construct sets that contain the following kind of 

elements: { } { }{ } { }{ }{ }{ }, , , ,............∅ ∅ ∅ ∅ . But the idea that all construction of sets 

starts at some fixed stock of concrete objects implies that a going back to lower and 
lower levels of hierarchy must eventually stop at some point. This motivates to require 
that there exists an element in any non-empty set  M  that does not contain elements of 
M. Written as a formula this axiom reads as follows: 
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 ( ) ( )( )( )set : : :M M x x M y y M y x∀ ≠ ∅ ⇒ ∃ ∈ ∧ ∀ ∈ ⇒ ∉  (1.3.12) 

With this axiom and with the pairing axiom we can show the following theorem: 

Theorem1.3.1: ( )set :N N N∀ ∉  

Proof.  Let a set  N  be given arbitrarily. With the pairing axiom we can form the set  

{ }M N=  . M is not empty. Then, according to the regularity axiom, this set M must 

contain an element  x  such that for all elements  y  in  M  one has  y x∉ . But there is 
only the element  N  in M so it follows  N N∉ .  

An immediate consequence of that theorem is   

Theorem 1.3.2:  { }:x x x∀ ≠  

Proof. Let x be given arbitrarily. Applying theorem 1.3.1 to the set { }x  one sees that 

{ } { }x x∈  is false.  On the other hand, { }x x∈  is true. The first formula can be obtained 

from the second one by substituting { }x  in the place of the expression x on the left hand 

side of the symbol “∈”. Then the rule (1.2.6) gives  { }x x≠ . 

The proof of the following theorem is left as an exercise: 

Theorem 1.3.3: ( ) ( )set :M x x M M x∀ ∀ ∈ ⇒ ∉   

Next we have the power set axiom. This simply states that the totality of all subsets of a 
set is also a set:  

 ( ) ( ) ( )set set :M N x x N x M∀ ∃ ∀ ∈ ⇔ ⊂  (1.3.13) 

This set is called the powerset of  M and it is written as ( )P M .  

Further one requires that one obtains a set if one replaces the elements of a given set  M  
by other objects that are uniquely determined by the elements of the given set. This 
determination of new objects is established by means of a formula [ ],x yΦ  that contains 

the free variables  x and y , where “x” is a name of elements of  M. For every  x M∈  
there should exist a unique  y  such that [ ],x yΦ  is true. In order to write this axiom in a 

comprehensible manner it is convenient to introduce an abbreviation for the existence of 
a unique y such that [ ],x yΦ  is true: 

 [ ] [ ]( ) [ ] [ ]( )( )
.

! : , : , : , ,
Def

y x y y x y a b x a x b a b∃ Φ ⇔ ∃ Φ ∧ ∀ ∀ Φ ∧ Φ ⇒ =

 (1.3.14) 

Further we shall define two more abbreviations: 
 ( ) ( )

.
: :

Def
a M a a M∀ ∈ Φ ⇔ ∀ ∈ ⇒ Φ  (1.3.15) 

 ( ) ( )
.

: :
Def

a M a a M∃ ∈ Φ ⇔ ∃ ∈ ∧ Φ  (1.3.16) 

Replacement axiom: For any formula [ ],x yΦ  in which x, y, a, b, …and M  appear 

freely but N does not appear freely the following formula is true: 
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( ) ( ) [ ]( ) ( ) ( ) [ ]( )( ).. set : ! : , set : : ,a b M x M y x y N y y N x M x y∀ ∀ ∀ ∀ ∈ ∃ Φ ⇒ ∃ ∀ ∈ ⇔ ∃ ∈ Φ

 (1.3.17) 

A simple application of the replacement axiom and the union axiom is the definition of 
the union of a family of sets. Let  I  be a non-empty set and suppose that one has a 
unique set  iA   for every  i I∈ . Such a collection of sets is called a family of sets and 

the set  I  is called the index set of the family. Then, the replacement axiom tells us that 
there exists a set  M  whose elements are exactly the sets  iA .   

 { }|iM A i I= ∈  (1.3.18) 

The union of the family is then defined as the union of  M: 

 { }
.

|i
Defi I

iA A i I
∈

= ∈∪ ∪  (1.3.19) 

 


