1.5 Natural numbers and set theory Il

Many scientists and engineers think that theomyoisworth anything as long as it does
not come up with concrete numbers. There might &t af truth in such judgment;
nevertheless it is intimately related to two wradgas. First the idea that values of
physical quantities are numbers, and secondly,thatbers are concrete objects. The
notion of number is the paragon of abstraction.

What do we mean by saying “there are three glamseke table”? Three is something
that the set{ Pierre Curie, Max Planck, Michael Fargx}i has in common with the set

{Danube, Tiber, Thamp. Well, but these sets have in common the fact thay

consist of European elements and this fact is hetnmumber three. To exclude such
unwanted properties one might take more and madsevdéh three elements so that the
only remaining common property is the number thiget there are two points to be

taken care of: 1) No matter how many different séth three elements we take they all

have in common the fact that they are sets andishist the number three. So the

number three cannot solely be characterized agl@e@ommon property of certain sets.
One has to add that this property also distingsighese sets from other sets. 2) Of
course it is not acceptable to define the numbreetby a procedure that takes sets with
three elements, because this is a circular argument. sSehection of sets has to be

defined without reference to the number that onetsvto define. This can be done with

the help of bijections. Obviously all sets with teeme number of elements can be
mapped bijectively onto each other. So one mayndefhe number three to be the
property that all sets that can be mapped bijdgtiveonto the set

{Danube, Tiber, Tham]e have in common and that distinguishes these sets &ny
other set.

This is abstraction. The word abstraction comemftbe Latin verkabstrahere, which
means to take away, to withdraw, or to remove. Waave the fact that Danube, Tiber
and Thames are rivers, that they are located irofguand whatever fact we may
imagine that is not the wanted evaluation of tize sif this set. The size of a st that

is defined this way is called itardinal number and it is written azw . Two sets have
the same cardinal number if and only if they camag@ped bijectively onto each other.

O(setM )O( seN) (|M|=|N| = F(FM- N)) (1.5.1)

Cantor used this idea for judging the size of ¢eriafinite sets. For the time being we
shall be concerned only with finite sets.

One may object to this construction of a notionnbgans of abstraction. Two points
remain dubious: Will there be anything left takimgwanted things away? And if so, is
what is left unique? For instance two sds and N that can be mapped bijectively

onto each other also have the property that thmirepsets P(M) and P(N) can be

mapped bijectively onto each other. One may say tiia is not really a different
property. At least from an extensional point of wi¢he existence of a bijection

F:M « N is equivalent to the existence of a bijectio®:P(M) « P(N). The
condition [G:(G:P(M) - P(N)) will judge the same sets as equally sized as the

!|s three a thing? The German word “etwas” wouldrheh better than the word “something”.
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condition [F :(F M o N). But it is preferable to appoint a definite merthject as a
number. That can be done:
Definition: The cardinal numberiM| of a setM is any of the setsN that satisfy

[(F :(F M o N) together with a mark that tells us that this nésject is no longer a

set and the equality of theses objects is no lodgéned by the extensionality axiom
but by the condition (1.5.1).

Similar procedures can be used to define many atbstract notions.
The usual constant names

0 = |0
Def .
1 = ‘{ Johann Sebastian Bzﬂ:h
2 = ‘{AIbertEinstein, Max Planc}k (15.2)
3 = ‘{ Danube, Tiber, ThamHs
Def .
[l
[l

can be defined. The choice of the sets with one, tiaree etc. elements is arbitrary. But
this is inconvenient because it turns the taskalk about all possible numbers a
difficult one. It is better to select standard representative among the setsN that

satisfy [F:(F:M ~ N). Let us write the standard representative of mber n
with the symbol n. One ha#ﬁ‘ =n. The numbers 0, 1, 2, ... are not sets, but their
standard representatives are sets.

There is only one set with cardinality zero, whish(l. This has to be the standard

representative of that number. 8& [ . The other standard representatives should be
defined in such a way that they can be construsgstematically. This can be done with
the help of the following “elevator operation”: Famny setA we define a set by adding
the set itself as a new element:

forset A define: A" = AO{A (1.5.3)

Def .

We shall call A" the elevation of A. Because of theorem 1.3.1 this operation really
adds a new element to the original set.

Exercise: Prove the following theorem:
Theorem 15.1: O(setA)0(seB) (A =B = A=B]

We may generate all standard representatives byyiagpthe elevator operation
successively beginning with the representafivel' his way we get
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]

0
1 = {O}
2 = {o{oy) (1.5.4)
3 = {o{o}{o{o})
0
0

S01=0 , 2=1 , 3=2 and so on. This “and so on” has to be formulated precise
way.

The elevator operation can be applied endlesslergéng more and more standard
representatives whose cardinal numbers form materare numbers. Endlessly means
without end or “finis” (Latin end). This means wave here amfinity. The opponents
of set theory accepted this sort of infinity definley a not ending generating process.
But they did not accept to consider the totalityaffnumbers that can be generated an
existing entity. In fact the expression “that cam denerated” is quite a dubious one:
obviously a human being can apply the elevatoraifmer only a finite number of times.
What is really meant by “that can be generatedsoisething else, something inherent
in the generating process itself without referetwean executing being or machine.
Here we shall be willing to accept the totalitysthndard representatives that can be
generated from] by endless application of the elevator operatisram existing set.
This is quite a decision to accept talking abotinite objects! So if we are willing to
accept that a set of all standard representathagan be generated from by means

of the elevator operation exists then that setet$ should have the property that it

contains 0 as an element and that the elevatiah of any elementa of that set is
again an element of that set. Sets with this ptgpeceive a special name. They are
calledinductive sets.

Definiton: A set A is calledinductive if and only if 1) all its elements are sets, 2)

DOA and 3)0a:(aDA=a’ OA).

The decision to accept infinite sets can now bentdated with theinfinity axiom:
Thereexist inductive sets:

[(setA) :A is inductivi (1.5.5)
Our standard representatives are obviously cordaimeny inductive set. This allows
us to formulate the above “and so on” in a prewiag: The infinity axiom allows us to

write the sentence: Lem be an inductive set. Next the subset axiom allosvio form
the set of all standard representatives of naturaibers:

N = {xOM |O(setN) {N is inductive xCOIN)} (1.5.6)

For anyx in N the cardinal numbdlx| exists and is uniquely determined by Then
the replacement axiom permits us to form the sailafardinal numbers of elements of
N:

N = {|x|‘ xmﬁ} (15.7)

Def .
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This set is called theet of natural numbers and its elements are callathtural
numbers.

From the definition (1.5.6) it follows thdf is a subset of any inductive set. Then the
following important theorem is another immediatesequence:

Theorem 1.5.2: For any subsetA ] N onehas: A isinductve = A=N

Let us define the mappinG N: - N that associates to any elementDofits cardinal
number:

0(a0R): c(a) = Id (1.5.8)
A first consequence of that theorem is:

Theorem 1.5.3: The mappingC N - N that associates to any element M its
cardinal number is bijective.

Proof: The very definition of N, (1.5.7), means thaC N o N is surjective. It
remains to show that this mapping is also injectivet

u = {xDﬁlD(yDﬁ):(M:M:>y:x)} (1.5.9).

We have to show that =N . To that end we use the theorem 1.5.2 and tripdavghat
U is inductive. The uniqueness afl implies that O [JU . Next we have to show that

D(aDU):(aDU =a' DU) is true. So letalJU be given arbitrarily. If a' DU was

false there would beé in N such that loj=|a'| and bza'. If this b were the

elevation of somec in ﬁ this ¢ would be different froma and it would have the

same cardinality aa (exercise: show this!). But as[1U there is no other set inN
with the cardinality|a|. Therefore the elemeri cannot be the elevation of an element

of N. Then one could také away from N without destroying the inductivity. So
N\{b} would still be an inductive set. But that contraslithe fact thatN is a subset

of any inductive set. Soa' JU must be true. So we have shown that is an
inductive set. Then the theorem 1.5.2 implies thet=N and this means that

C:N - N s in fact injective. This completes the proofdaat this point we also
terminate the scope of the variablasand b and the validity of the definition (1.5.9)
so that the symbols, b, andU may be used for other purposes.

The fact thatC N — N is a bijection permits transferring the structthiat exists in
N to the set of numbers. This goes as follows: eryenumbern there is a unique
standard representativen , which is given by n:C‘l(n). On this standard

representative we can apply the known set theooggcations and then we can go back
to the set of numbers applyil@. First we may define a functiors: N - N called the
successor function.

D(nDN):(S(n) = ‘(C'l(n))TD (1.5.10)
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Despite the fact that this successor function isy viemportant, we only used the
temporary dg “ . There are two reasons for this limitationelatonce we have defined

the sum of numbers, we shall write the successeratipn in the simple fornrm+1 and
further, the letterS is far to often used in physics to occupy its wih the successor
operation for ever.

The first application of this definition is a tramiption of the theorem 1.5.2 to numbers.
The set A that appears in the theorem can be mapped osgd é‘,(A). This set may

be determined by some formula. So it may be thefsettmbersn for which a certain
formula d)(n) is true. Then the theorem 1.5.2 appears in thesimg guise:

Theroem 1.5.4 (Induction principle): If a statementd)(n) that depends on a natural
number n is true forn=0 and if the implication® (n) = CD(S(n)) is true for alln

in N then ®(n) is true forallnin N.

The proof is trivial. Just translate all back N with the help of C™*. Take
A = {xDI§1| CD(C‘l(x))}. The conditions ®(0) is true” and
def .

D(nDN):¢(n):>¢(S(n)) mean that A is inductive. Then apply theorem 1.5.2
and finally go back to the numbers.

This theorem provides a very powerful tool for domsting proofs of theorems that
have the formO(nON): ®(n).

The following list of theorems describes basic grips of the successor operation.
The proofs are simple exercises:

Theorem 1.55: O(nON)O(mON):(nzm = S(n)# S(m))
Theorem 1.5.6: O(nON):S(n)#0
Theorem 1.5.6: O(nON\{0})(mON): n=5(m)
We may joint the three theorems in a single form&aN ~ N\{0}.
The natural numbers can be ordered. One defines:
D(nDN)D(mDN):(n<m < ﬁmﬁ) (1.5.11)
and

Def .

D(nDN)D(mDN):(nsm - (n<mDn=m)) (1.5.12)
The inverse relations are also written as > anespectively. The relations and =

are total order relations.

The induction principle is an elegant way of tatkiabout all natural numbers. This
technique can also be used to define functionfNorThe idea is to specify the value

F (0) and to tell with a rule how the valuer(S(n)) can be obtained starting from the
valuesF (n). Then this rule can determine the valE¢l) from the valueF (0). Next
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the same rule permits to determine the vaf@) from the valueF (1) and so on. This
sort of procedure is calledracursive definition of a function. Again this “and so on”
has to be defined properly. This is done with tieWwing theorem:

Theorem 1.5.7 (Recursion Theorem): Let A be a non empty setallA a given
element, and G:A - A a given function. Then there exists a unique fonct
F:N - A suchthatF (0)=a and O(nON): F(S(n)):G(F(n)).

The proof is not difficult but a bit lengthy. Weahintroduce some abbreviations and

show an auxiliary theorem. In mathematical literatsuch auxiliary theorems are called
lemmas. We define thatrict and enclosing tail of a number:

fornON define  n. = {mON |m<n} (1.5.13)

<

fornON define  n. = {mON Im<n} (1.5.14)

Lemma 1.5.7: Let A be a non empty setal]A a given element, andc A~ A a
given function. For any in N there exists a unique functior, n_:- A such that

F,(0)=a and O(kOn.): F,(S(k))=G(F, (k).

Proof of Lemma 1.5.7: We shall prove this lemmaitguction. Forn=0 we have
0.={0, 0.=0 and the function with the only valu€,(0)=a satisfies the

conditions and is the only one that does that. Netwn in N be given and suppose
that there is a unique function F, n:- A such that F,(0)=a and

n

O(kOn.): F,(S(k))=G(F,(k)). We have to show the existence of a unique functio
F 1 (S(n)). - A such that Fyr (0) =2 and
D(kD(S(n))<): Fem (S(K)) :G(Fs(n) (k)) . We chose
Fn(k) if k<n
FS(n)(k) » :
“. |G(F,(n)) if k=S(n)
This notation with a curly bracket enclosing seldiaes is common to define a
function by pieces. One could equally well writeves@al equations. This function

satisfies the conditions,, (0) =a and D(kD(S(n))<): Fe (S(K)) = G(Fs(n) (k)) It

remains to show that this function is unique. Brdhwere a second functioFFS(n) that

(1.5.15)

satisfies these conditions this one would havedmade with Fg, on the setn,
because of the fact that F was unique. It remains to show that

n

Ifs(n)(S(n)):FS(n)(S(n)). The expressionslfs(n)(s(n)) and Fs(n)(S(n)) have to
fulfill the conditions Fy,, (S(n)) =G (F,(n)) and Fy, (S(n))=G(F,(n)) Then they
have to be equal. This completes the proof.

The functions F, of the lemma can be used to prove the theoren7.IThe function
whose existence is claimed is given by

D(nDN):(F(n) = Fn(n)) (1.5.16)

27



This function obviously satisfies the conditions tbe theorem and its uniqueness
follows from the uniqueness of the functioRs and theorem 1.5.7 has been proven.

The recursion theorem can be used to define theasuhthe multiplication of numbers.
First one defines a functiotd , for any m in N by means of the following recursion:

H,(0) = m (1.5.17)

def .
and

D(nDN):(Hm(S(n)) S(Hm(n))) (1.5.18)

.
The valuesF, (n) depend on both variables; and n. This defines a function
>:NxN - N such that for alhin N andmin N

Z((mm) = H,(n) (1.5.19)

Perhaps the reader might not have realized thaighgsimply the sum of the numbens
and n. The functionX is usually written with the sign “+” and instead writing

+(<m, n>) one writes m+n. The successor operation can now be written inoeem
familiar form: S(n)=n+1 and we may terminate the use of the symBohs successor
function.

The reader can spend quite a time to prove the kmelvn properties of the sum with
nice inductive proofs:

Commutativity: O(nON)O(mON): m+n=n+m (1.5.20)
Associativity: O(nON)O(mON)O(kON): m+(n+k)=(m+n)+k (1.5.21)

Because of the associative property one may wiriiplg m+n+k.

There is another and very natural way of definihg sum of numbers. For given

numbers min N and nin N let m and n be their respective standard
representatives. Lea be an arbitrary object. For instance we may take [1 . Then

we can form the setn ><{a} . This set has the same cardinality?asand it consists of
ordered pairs and therefore it has no common elenveth m. Then define

Ha(n) = |[mO(nx{a}) (1.5.22)
This function satisfies the recursion (1.5.17)5(18). Here the sum of natural numbers

is very intuitively defined by joining sets withoabmmon elements and counting the
number of resulting objects. This is exactly whahdd does to build the notion of sum.

The Cartesian prodU(;tX{a} is only a simple trick to guarantee that the twts have
no common elements.

The multiplication can also be defined with a resgom. For anym in N we define a
function M, :N - N such that:
M,(0) = 0 (1.5.23)

D(nDN):(Mm(n+l) = Mm(n)+m) (1.5.24)
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Now the totality of these functions defines a magpi1:NxN - N such that
M ((m n)) = H,(n) (1.5.25)

def .
This is the product oim and n. Similar to the case of the sum, one prefers itevan
operational symbol between the numbers rather ghimction symbol that takes the

ordered pair as an argument. So insteadl'lc((m, n>) one writesmxn .

In fact scientists are lazy and write simplyin without any symbol that indicates
multiplication. This lazy way of writing a produlbais several disadvantages: 1) It is not
a uniform way of writing a product because if batimbers are represented by constant
names an ambiguity would arise; is 53 the proddch @and 3 or is it the decimal
representation of fifty-three? So in the case af wonstant names one has to use a
multiplication sing. 2) A similar ambiguity wouldrige if one admits the use of
variables with several letters. 8m could simply be a name of a variable. The lazy way
of writing products impedes the use of variablethwseveral letters. 3) Who ever taught
freshmen physics or mathematics courses will haggced that many students

misunderstand expressions Iik(ex+s). Instead of taking this as the value of the

function f at the point x+¢& they interpret f (x+¢) as a product off and x+¢.

Well, with some experience one can guess from theegt what is meant. But
scientific language should not work this way! Tdomfounded students are completely
right. We shall afford the luxury to write the mplication sign. Fortunately in physics
and other quantitative sciences multiplication ofrbers is seldom. In most cases one
multiplies values of physical quantities or othesthematical objects, and in some of
theses cases we shall adhere to the lazy way ahwriFor numbers we shall use the
lazy notation only in well specified exceptionakea such a&m and 4rt.

Again we invite the reader so spend some time tverthe well known rules of
multiplication:

Commutativity: D(nDN)D(mDN): M<N=nNxM (1.5.26)
Associativity:  O(nON)O(mON)O(kON): mx(n<k) =(m-n)-k (1.5.27)
Distributivity: ~ O(nON)O(mON)O(kON): mx(n+k)=m«n+m-k (1.5.28)

There is an alternative way of defining the prodattnatural numbers: For given

natural numbersn andn let m and n be their respective standard representatives.
We may define

m«n = ‘mxn
Def .

(1.5.29)

Sum und multiplication are functions of the type AxB - C. Such type of function
is also called &inary operation. So + and~ are binary operations.

Now we have the basic mathematical elements thitbeihelpful to define what a
physical quantity is. Other tools may be introduoadthe way and some mathematical
items shall be worked out in the exercises at thd @& this section. Let us briefly
summarize the main points: We have introduced bagic notation, sets, relations, and
functions. Especially the equivalence relationd pidy a fundamental role when we
define quantities. Natural numbers have been deéfamel we have seen that the sum of
numbers is a mapping of the kind NxN - N with certain properties.
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Exercises:
E15.1: For any setA the Cartesian produdil x A is empty. Therefore there exists

only one element irP(D ><A), which is the empty set. Show that this relatisnai

function.
E1.5.2: For setsA andB one defines:

‘B = {xOP(AxB)|x:A - Bl (1.5.30)

With the help of this set of mappings one may definbinary operation on the set of
natural numbers as follows

F\nﬂ

n
Def .

D(nDN)D(mDN):(nm =

] (1.5.31)

Give an alternative recursive definition of thiseagtion! Also show that this operation
has the following properties:

O(kON)O(1ON)O(mON): K k™ =k!"™ (1.5.32)
O(kON)O(I1ON)O(mON): K™«™ = (k«l)" (1.5.33)
O(kON)D(1ON)O(mON): - (k™)'=k™ (1.5.34)

E153: Let A be a set on which one has a commutative and iatisechinary
operation “+”. Letn andm be natural numbers and suppos& m. Suppose one has a

function f :(rrg \n<) - A, wherem, and n_ are defined by (1.5.14) and (1.5.13). One
defines the symboE f (k) to be the sum of the values bfThat means the sum
k=n

f(n)+f(n+1)+...+ f (m). The “....” is an indication of the type “and so omhich
should be defined properly. Give a correct defimtiComment: The variableappears

in the expressiori f (k) in bound form. So it is a dummy variable. The eabf the
k=n

sum does not change if one writes a different égiaame.
E1.5.4: Prove the following theorem inductively:

O(nON): 2xzn:k:nx(n+1) (1.5.35)

E15.5: Fornin N define

o~ A
{XD n|x:an}

Give an alternative recursive definition @ and show that your definition coincides
with (1.5.36) for alln.

n o = (1.5.36)

Def .
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