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1.7 Critical Review of the Notion of Physical Quantity - Experimental 
Error 
 

“Die Welt ist meine Vorstellung:” – dies ist die Wahrheit, 
welche in Beziehung auf jedes lebende und erkennende Wesen 
gilt.  
Arthur Schopenhauer: Die Welt als Wille und Vorstellung.  

  
Our notion of physical quantity still needs some substantial corrections. First of all it is 
not quite true that the definition of a quantity can be based on a single experimental rule 
of comparison and a single rule of sum of values. For example, in the case of spatial 
distance we defined the equality of values by fitting the spikes of a compass into pairs 
of points. But if we would like to talk about the distance of Earth and Sun no one would 
be able to fit the spikes of a compass to Earth and Sun. Also in the case of mass the 
desire to consider the masses of these celestial objects forces us to substitute the original 
experimental rule by some different rule. So in general one has to consider several rules 
each one with a specific domain of applicability. But whenever the domains have 
common elements the rules should define the same structure on theses intersection sets.    

Another point that needs a critical review is far more difficult to mend. We invented a 
nice notion; but do physical quantities actually exist?  -  Well as mentioned at the end of 
section 1.6, with masses our students successfully verified the properties of equivalence, 
the compatibility of the sum rule and equivalence, associative and commutate property 
of the sum. But that was done with a very limited set of objects. In fact subsequently 
these students received another task and they discovered that things are not so easy. 
They were asked to separate 10 heaps of sand, each heap with a mass equal to the mass 
unit (the mass of the nut of Figure 1.6.5). Next they located the amount of 5 heaps in 
each cup of the balance. According to the rules, the balance should remain in horizontal 
equilibrium. But that did not occur! A slight deviation from the horizontal orientation 
could be seen.  
One possible attitude towards this finding would be to abandon the notion of physical 
quantity altogether. But this radical position would not be fruitful. It is far better to 
admit that the experimental methods that are used to verify equality of values and to 
build the sum of values have some imperfections. So for example in the case of the 
balance, the instrument might have a slight asymmetry and the observer may not 
perceive small deviations from the horizontal equilibrium. We shall imagine perfect 
experimental procedures which result in the mathematical structure discussed in the 
pervious section. For every object  A  in the domain of a given quantity Q  we imagine 
that a measurement with these  ideal  procedures would yield some value  TRUE

AQ   . One 
supposes that these “true” values satisfy all the mathematical conditions that were 
elaborated in section 1.6. We shall refer to these conditions as conditions of self-
consistency of the quantity. The true value is a mere idea of our mind, but part of that 
idea is that it is a real property of the concrete object  A. It is supposed to exist, but we 
shall never get hold of it. Nevertheless it is a useful concept. It is useful provided one is 
able to estimate how much the actually measured values may differ from the true 
values. Such estimate is called an estimate of experimental uncertainty. A little later we 
shall discuss how such estimates are established.  
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Let us see how the practical application of the notion of true value works. Suppose we 
have some object A in the domain of certain quantities  Q  and P . And let us assume 
that we have discovered some physical law that relates the values of the quantities so 
that the values of  P  are a function of the values of  Q.  So we have a known mapping 

: Q PF V V® . Now we measure Q  and obtain a value MEASURED
AQ . With the help of an 

estimate of experimental uncertainty we come to the conclusion that the true value is an 
element of some set  S  of values  around  MEASURED

AQ . So supposedly we know that 
TRUE

AQ SÎ  , where the set  S  is determined by the experimental result  MEASURED
AQ   and 

the estimate of experimental uncertainty. Then the physical law  F  permits to affirm 
that the true value of  P  is an element of  the image set  ( )F S . Now suppose we also 
know how to estimate the experimental uncertainties of measurements of P . Then we 
may predict that a measurement of  P will yield a value that is in a set slightly larger 
than ( )F S , (enlarged according to the uncertainty estimate of measurements of  P). So 
after all, we get a prediction that the result of some real measurement of  P  will fall into 
a certain set. Figure 1.7.1 illustrates this situation with a graphical representation similar 
to the one of example 2 of the relation “<” (see section 1.4). What matters is that real 
results permit a prediction of other real results. So one might be inclined to cut the 

imagined true values out of quantitative sciences and 
formulate everything only in terms of the effectively 
measured values. However, this would turn our lives 
quite difficult, because the mathematical structure that 
we introduced in the previous section can only be 
assumed for the imagined true values.  
Figure 1.7.1   True and measured values of quantities related 
by some function F. S = set of possible true values of Q.  F(S) = 
set of possible true values of  P. The set of possible outcomes of a 
measurement of  P  will be a little bit larger than F(S). 

In the case of one dimensional quantities one calls the 
set  S  the interval of experimental uncertainty. In most 

cases the estimate of uncertainty is symmetric so that the measured value MEASURED
AQ  

lies right in the center of the interval  S. In this case one writes the statement  
TRUE

AQ SÎ  in the form  

 ( ) UAQ a b= ±  (7.1) 
where  a  is a number,  b  is a positive number and  U  is some unit of the quantity Q. 
The index “TRUE” is no longer written.  Ua  is the measured value and Ub  is called 
the experimental uncertainty. So for example, a mass of a given body that was 
determined with the help of a balance capable of measurements of typical precision of 2 
grams could have the following appearance:  

 ( ) K3.720 0.002 gAm = ±  (7.2) 

Note that we wrote the number 3.720 with an extra 0 at the end. As far as the numerical 
value is concerned one has 3.720 = 3.72. But the extra digit expresses that we have 
some knowledge concerning that ultimate digit.  
In many scientific journals it is custom to write formulas such as (7.2) without 
parenthesis   K3.720 0.002 gAm = ± .  This may be justified by saying that it would be 
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impossible to interpret the right hand side erroneously as  ( )K3.720 0.002 g±  because 
one cannot sum numbers and mass values. This is not quite true. In principle one can 
define such sum. In linear algebra such type of sum is called a direct sum and it leads to 
a new two-dimensional quantity. Also things become even more dubious, when the unit 
involves some numeric power of 10. It is not at all seldom to find formulas such as 

33.720 0.002 10 gAm ´= ±  . In this case the lack of parenthesis is definitely 
inappropriate because this formula could be confused with ( )3.720 2.000 gAm = ± . In 
the present book we shall apply the rule “a product binds stronger than a sum” also in 
the case of products of values and numbers and therefore we shall write always a 
parenthesis like in formula (7.2).  

Let us come back to the example of figure 1.7.1. Instead of taking the prediction as 
relation of really measured values one often mentions the predicted true value of P 
explicitly. That means the theoretical prediction has the form  ( )TRUE

AP F SÎ  , but 

usually the superscript “True” is not written. The set  ( )F S  is the uncertainty interval 

of the theoretical prediction based on the experimental input data MEASURED
AQ  and the 

uncertainty estimate of this input data. Then one measures  P  and finds a result    

 ( ) VAP p r= ±  (7.3) 
where V is a unit of  P.   Now if the interval of uncertainty of that measurement has a 
nonempty intersection with the interval ( )F S  of uncertainty of the theoretical 
prediction we may say that the experimental outcome turned out to be compatible with 
the theoretical prediction. In principle one should abandon the theoretical description if 
the intersection is empty. However this decision is not always the most appropriate one. 
As we shall see anon, the estimate of experimental uncertainty is difficult and one may 
not be absolutely sure about these estimates. Therefore one may not want to abandon a 
theoretical description right away if the intersection of the uncertainty intervals is empty 
but the discrepancy of prediction and experimental outcome is not much larger that the 
intervals of uncertainty. Figure 1.7.2 illustrates these situations:  
 
 

Fig. 1.7.2 Comparison of a 
theoretical prediction and an 
experimental outcome.  
 

It remains to discuss the 
important question how the 
estimates of experimental 
uncertainty are made. In 
principle, what determines 
the estimated intervals are 
tests of self-consistency like 
the one made by the students 
with the help of 10 heaps of 
sand.  

One performs measurements in order to verify the self consistency rules that were 
explained in section 1.6 and looks what is the minimal size of the uncertainty intervals 
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so that the assumption that the true values obey the self-consistency rules does not lead 
to contradictions. If one then makes measurements in some experiment with 
experimental techniques that are similar to the ones used in the tests of self-consistency 
one will use these intervals as estimates of the experimental uncertainty. However the 
use of intervals determined in self-consistency tests in an experiment that uses similar 
techniques is not a completely save procedure. This is evident because in apparently 
equal repetitions of experiments the results usually differ slightly. Therefore the 
uncertainty intervals that were determined in specific tests of self-consistency give only 
a rough estimate of the possible experimental error that may occur in a real experiment.  

These procedures do not look clean at all. Many people call physics, chemistry and 
other similar sciences the “exact sciences”. Some people state that this name is due to 
the fact that these sciences use mathematics. This does not seam to be a good argument, 
because astrology also uses mathematics and this is not a science at all. Some people 
say they are exact, not because there are no errors involved, but because the errors are 
judged. Well without doubt, it is a merit to judge the errors. But this judgment is just the 
most inexact thing in these sciences. It might be the best thing to abandon the name 
“exact sciences” altogether. What remains astonishing is that these sciences are so 
successful despite these imperfections.  
To end this section we shall report on the tasks that our first-year students received at 
the end of their first physics lesson. They were asked to measure the size of the small 
deviations from the ideal behavior of the balance with a somewhat different method of 
measurement. They compensated the deviation by putting an appropriate piece of paper 
steamer (the kind that is used in carnival) on one side of the balance to reach horizontal 
equilibrium. After that they spooled down a much longer piece of that ribbon on one 
plate of the balance until the balance got into horizontal equilibrium with a mass unit 
(the nut) on the other side. So the long stripe of ribbon was known to have the mass of 
one mass unit. Then they measured the lengths of both pieces with the help of a long 
ruler and determined the mass deviation from the ideal behavior applying a simple rule 
of three.  

Finally the students received the following homework:  

Exercise: We measured the length of paper ribbons with a ruler. Well, everybody 
knows how to use a ruler. Also every monkey knows how to open and to eat a banana, 
but the monkey does not know what he is doing! Scientists should not use rulers the 
way monkeys use bananas! So what is a ruler? A ruler is a large collection of distance 
values that helps to measure distances without the need to apply the experimental rules 
of sum of distance. We need only compare distance values and the formation of the sum 
of values has already been taken care of by the manufacturer of the ruler. But that 
presupposes that the manufacturer knew how to form the sum of distance values. One 
needs a definition of the sum of distance values: So there are your tasks:  

(a) First define an order relation of distance values. 
(b) Then define the sum of distance values. 

(c) Finally write what is wrong with the definition: Well, in order to build the sum 
of two distance values I express the values that I want to add in terms of a unit 
and then I simply add them: 5cm + 2 cm = 7cm .  


