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1.8 Secondary Quantities. 
In section 1.2 we saw that one can build new formulas from old ones with the help of 
the logical connectives Ø , Ú , Ù , Þ , and Û . In a similar way one may define new 
quantities from old ones.  
Let us start with a very simple, almost trivial connection of old and new quantity. Let  Q 
be some linear quantity and let  a   be some fixed number. Then we may define a 
quantity  Qa   such that the value of that quantity of any object A in the domain of  Q 
has the value   AQa  .  

Next one often finds objects that permit defining several quantities of the same kind 
with values in the same value space. For instance, think of rectangles. A rectangle 
permits defining two quantities of the type spatial distance; the width w and the height 
h. Now we can form a new quantity  2 2s w h= + , which is the length of the periphery.  

These ways of forming new quantities from old ones are very simple because they use 
only the operations that are already defined in the value space. A much more interesting 
way of getting new quantities is multiplying old ones. This needs a specific definition. 
Multiplication of numbers may be introduced by repeated summing. So 3 5´  can be 
defined as 5 5 5+ + . But this sort of definition does not work if one wants to multiply 
mass and acceleration.  

Let  Q  and  F  be two linear and continuous quantities with finite dimensional value 
spaces QV  and  FV   respectively. In order to define a product of  Q  and  F  we have to 
assume that the domains of these quantities have a non-trivial intersection, otherwise it 
would not make much sense to combine Q  and  F  to form a new quantity. If the 
original domains  QD   and  FD   have an empty or a trivially small intersection one may 
enlarge them so that the new domains have a reasonable intersection that is large 
enough to form the domain of the new quantity Q FÄ .  

If  A  is an object from this domain it has values  AQ   and  AF   of the respective 
quantities  Q  and  F. It is natural to require that theses values determine a unique value 
of the new quantity Q FÄ .  If  A  and  B  are objects such that  A BQ Q=   and  A BF F=  
we demand that ( ) ( )A B

Q F Q FÄ = Ä .  

But this legacy of equivalence is not the only source of equality of values. An ordered 
pair of values ,A AQ F  determines a value of the quantity Q FÄ . But several different 
pairs may determine the same value of the product. The question which pairs should be 
taken to define the same value of the product depends on the notion of product itself. 
What kind of binary operations deserve the name of product? Well, anything deserves a 
special name only if that thing turns out to be useful or important. It so happens that 
binary operations that obey the same rules of multiplication of numbers usually have a 
lot of importance. If a , b  and g  are numbers one knows that  ( )´ ´a b g  and  ( )´ ´b a g  
result in the same number. We shall demand a similar property for products of values of 
quantities:  If  Qq VÎ  and  Ff VÎ  are values from the value spaces of  Q  and  F  and if  

a  is a number the pairs of values ,q fa  and ,q fa  should determine the same 
value of  Q FÄ . Let us write the value of  Q FÄ  that is determined by a pair of values 
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,q f  as q fÄ . With this notation we can write the stated requirement formally as 
follows: 

 ( ) ( ) ( ) ( ) ( ):Q Fq V f V q f q f" aÎ " Î " Î a Ä = Ä a  (1.8.1) 

In order to call Q FÄ  a quantity we should have a definition of sum of values. Again 
we shall copy the properties that hold for products of numbers. We require two 
distributive laws:  

 ( ) ( ) ( ) ( ):Q Q Fr V q V f V r q f r f q f" Î " Î " Î + Ä = Ä + Ä  (1.8.2) 

 ( ) ( ) ( ) ( ):Q F Fq V f V g V q f g q f q g" Î " Î " Î Ä + = Ä + Ä  (1.8.3) 

In the case that at least one of the quantities   Q  or  F  is one-dimensional the 
requirements (1.8.1), (1.8.2), and (1.8.3) already determine the sum of values uniquely. 
We shall discuss this simple case first. Let us assume that  Q  is one-dimensional. Let  q 
and  r  be given values from  QV   and  f  and  g  given values from  FV . We want to 

determine the sum ( ) ( )q f r gÄ + Ä . As  Q  is one-dimensional one can always write 
the value q  as a multiple of the value  r  or the value r as a multiple of the value  q. If 
both values are different from zero or both values are zero both alternatives exist. If one 
value is zero and the other is not zero only one of the alternatives applies. Without loss 
of generality we may assume that  r  can be written as a multiple of  q. So we have  
r q= a .  Then the requirements (1.8.1) and  (1.8.3) give  

 ( ) ( ) ( )q f r g q f gÄ + Ä = Ä + a  (1.8.4), 

which determines the sum uniquely. So in the case that  Q  is one-dimensional the sum 
of values of  Q FÄ  has been determined by the algebraic structures of the spaces  QV  
and  FV  . With  0a =   one concludes that for any value  g  the product 0 gÄ  is the 
neutral element 0. And with the requirement (1.8.1) one concludes that 0qÄ  is zero 
too. Further we shall demand that  

 ( ) ( ) ( )( ): 0 0 0Q Fq V f V q f q f" Î " Î Ä = Þ = Ú =  (1.8.5) 
With 0 0qÄ =  and with equation (1.8.4) we conclude that any value of the product 
quantity can be written in the form  U fÄ  where  U  is some unit in the one 
dimensional values space  QV . Then the requirement (1.8.5) allows to formulate the 
following criterion of equality of values: 

 ( ) ( ), : U UFf g V f g f g" Î Ä = Ä Û =  (1.8.6) 
Obviously the same arguments can be applied when  F  is one-dimensional. 
In these cases one usually adopts the lazy way of writing products. We shall do the 
same:  for linear quantities at least one being one-dimensional we define:  

 
( ) ( )

.

.

For linear quantities ,
:

at least one being one-dimensional :
Def

Q F Def

QF Q FQ F
q V f V qf q f

= Äìü ï
ý í

" Î " Î = Äþ ïî
 (1.8.7) 
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If the two value spaces  QV   and    FV  are different one can distinguish the elements of 

the ordered pair ,q f  by their individual nature so that it is not necessary to 
distinguish them by their location in the ordered pair. If  QV   and   FV  are equal then 

any value of the quantity  Q FÄ   can be written in the form ( ) UU´a b , where  U  is 
some unite in  QV . This expression is completely symmetric. So in either case if  

Q FV V¹  or if   Q FV V=   it is not necessary to indicate which factor of a product stands to 
the left and which one stands to the right hand1. Therefore one defines for products of 
quantities where at least one factor is one-dimensional: 

 
( ) ( )

.

.

For linear continuous quantities ,
:

at least one being one-dimensional :
Def

Q F Def

QF FQQ F
q V f V qf fq

=ìü ï
ý í

" Î " Î =þ ïî
 (1.8.8) 
The case that both quantities  Q  and  F  are higher dimensional is quite more evolved. 
The requirements (1.8.9), (1.8.2), and (1.8.3) shall also be adopted in this case. But 
these requirements determine the sum  ( ) ( )q f r gÄ + Ä   only in the case when q  and  
r  are linearly dependent or  f  and  g  are linearly dependent. If both pairs are linearly 
independent a special definition of sum is required. In fact various types of product can 
be defined. For one type one even has to enlarge the value space of the quantity  Q FÄ   
in order to accommodate the values ( ) ( )q f r gÄ + Ä . We have already seen examples 
of enlargements of value spaces. In the original domain of the quantity mass there are 
no negative values. But in order to gain some mathematical simplicity one subjoins 
invented negative values. Later, in secondary usage of the mass quantity, the negative 
values even turn out to have a physical significance. The situation with products of 
multidimensional quantities is similar. In general there will be no object in the original 
domain of  Q FÄ   that corresponds to the values  ( ) ( )q f r gÄ + Ä  but with secondary 
usage of  Q FÄ  these values turn out to be useful. We shall postpone these definitions 
of products of multidimensional quantities to chapter 2 where multidimensional 
quantities are examined in detail so that the abstract definitions can be accompanied 
with intuitive examples.  
Having a product of quantities one may think of defining the inverse operation; i.e. 
division. In order to do that, we need another extremely important notion. At the end of 
section 1.6 we mentioned that the students measured small mass values measuring the 
length of pieces of paper ribbon. That method presupposes that the mass values of these 
pieces are proportional to their length. In fact in their second experimental class these 
students received the specific task to correlate the length of pieces of copper wire (the 
kind used in transformers) and mass (measured with a fairly precise commercial 
balance). This was done with two types of copper wire and the data were plotted and 
fitted with two strait lines passing through the origin, which means the point  length = 0 
and  mass = 0 . The fitted lines define functions that map the value space of length dV  
into the value space of mass mV . 

                                                
1 Note that this has nothing to do with the fact that the quantum mechanical operators  q and p do not 
commute. In fact, the product  qp  does not represent an observable.  
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The table 1.8.1 shows measured values for two types of copper wire, a thick one and a 
thin one, and Figure 1.8.1 shows the corresponding graphical representation of these 
data. Such representations are frequently used tools to represent, understand, and 
interpret measured data. Therefore a few words on such representations may be 
appropriate despite the fact that this issue is not within the scope of the present subject.  

When you create a graph on a sheet of graph paper, never start by designing the data 
points! Start creating scales! Never use complicated scale factors! One unit of the 
represented quantity should correspond to a simple number of divisions of the graph 
paper. Simple numbers are 1,  2,  5  possibly multiplied by some integer power of 10. 
Use scale factors so as to take advantage of a large part of the paper. Next, write scale 
labels! These labels should have a reasonable and uniform density. The borders (axes) 
of the graph should show these labels but not the data values! The data should appear 
only as data points, thought there may exist exceptions if one wants to emphasize a 
special value. Declare the represented quantities on the axis! If the quantities are not 
number-valued declare the unit! Marc the data points with symbols that permit high 
precision and good visibility. Little dots are not appropriate because they may disappear 
under an interpolating curve.  

Now let us come back to the issue of secondary quantities. The straight lines in figure 
1.8.1 were drawn guided by an artistic view. Later we shall discuss more scientific 
methods to select a straight line that expresses a functional relationship in data sets. The 
interesting point is that our brain somehow detects that there is some simple relation of 
function type between the length values and mass values. A closer look reveals that not 
all data points are exactly on the line. But they are so close that we may assume that the 
deviations are due to experimental error and the straight lines represent a real physical 
law valid for copper wires used in transformers. The length and mass values are 
properties of the individual pieces of wire, whereas the function is a property of the type 
of wire. We could do this sort of experiment with many other types of copper wires and 
we would find similar results. With the help of an interpolating straight line we can 
define a function that maps the length value space of length dV  into the value space of 
mass  mV  for every type of wire2. So for every type T of wire we get a function 

:T d mV Vl ®  such that the value  ( )Tl    is the mass value of a piece of wire of type  T 
and length   .  

These functions have a very special property: If we cut a piece of wire of a given type 
such that its length     is exactly the sum of lengths a   and  b   of two other pieces of 
the same type, the mass of that piece is the sum of the masses of the two pieces: 

 ( ) ( ) ( )a b T T a T b= + Þ l = l + l       (1.8.10) 

Also with multiples of lengths one has 

 ( ) ( )0 0T T= a Þ l = a l     (1.8.11) 

We may combine sum and multiplication with numbers to form linear combinations of 
values and express the properties (1.8.10) and (1.8.11) together by saying that one may 
form linear combinations before or after applying the function  Tl   and one gets the 

                                                
2 If one uses the enlarged value spaces that include negative values the mappings are defined only on the 
subsets of positive values. But as we shall see later, they can be naturally extended to the extended values 
spaces.  
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same result. Functions that have this property are called linear functions or linear 
mappings. This definition can be formulated for mappings between arbitrary linear 
spaces:  

Let A and  B  be two linear spaces with a commutative field     and let  
:f A B®  be a mapping. f  is called a linear mapping if and only if  

( ) ( ) ( ) ( ) ( ), , :a b A f a b f a f b" Î " a bÎ a + b = a + b  (1.8.12) 

Here we have applied a frequently used short had notation; instead of 
( ) ( )a A b A" Î " Î  be wrote a single quantifier for both variables; ( ),a b A" Î . 

Many other types of function are used in quantitative sciences but the linear functions 
outstandingly are the most important ones. The beginner should engrave this definition 
profoundly in his memory. The name “linear” stems from Latin “linea”, which means 
straight line, and which is related to “lignum”, which means wood – the trees tend to 
grow straight upward and the rulers used to be made of wood. Now, not every function 
that results in a straight line graph is linear in the sense of definition (1.8.12)! In fact 
many people call any function that result in a straight line graph a linear function. We 
shall not adhere to this nomenclature and shall restrict the name of linear function or 
linear mapping to the definition given above.  

Table 1.8.1 Length and mass values of pieces of two types of copper wire. 

Wire Type A Wire Type B 

Length [cm] Mass  [g] Length [cm] Mass  [g] 

5.5 9.68 7.0 21.0 

11.3 19.88 12.5 37.6 

25.6 45.00 33.7 100 

30.1 52.88 56.8 170 

52.7 92.80 67.9 206 

65.8 115.73 80.4 242 

72.3 127.18 91.1 270 

88.0 154.20 - - 

95.0 167.60 - - 

102.6 180.44 - - 
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Figure 1.8.1 Graphical representation of the data of Tabel 1.8.1 and two linear functions that fit these 
data.  

The linear functions Tl  are properties of the types of wire. Every type of wire has got 
its specific function, but several different types may have the same function. For 
instance, a wire with circular cross section and a wire with rectangular cross section 
represent different types of wire, but they may result in the same linear function. That 
looks like an equivalence relation on the set of types. Could it be that the totality of 
functions  Tl   with their relationship with types forms a physical quantity whose 
domain is the set of types of wire? Every individual function  Tl   could be a value of 
that quantity. What one needs in order to form a quantity is a definition of the sum of 
values. There is an obvious way of defining the sum of two functions: Let  Tl   and  Sl  
be two functions that describe the correlation of mass and length values of copper wires 
of type  T  and  S  respectively. The sum of these functions is the function  ( )T Sl + l  
whose values are the sum of the values of Tl   and  Sl  for all length values:  

 ( ) ( ) ( ) ( ) ( )
.

:d T S T Sdef
V" Î l + l = l + l     (1.8.13) 

The functions Tl   and  Sl  are linear. Obviously ( )T Sl + l  is linear as well. We may 
imagine that there exists a wire type with a relation of length and mass given by  the 
function ( )T Sl + l . With this definition we may in fact consider the totality of these 
functions together with their relationship with types of wire a physical quantity. We 
shall call this quantity the linear mass density3  and we represent it with the symbol  l .  
                                                
3 Here the word “linear” is not related to the definition (1.8.12). In this case it serves to distinguish the 
quantity  l  from other types of density such as areal density and volumetric density.  
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As discussed in section 1.6 a definition of sum of values of a quantity entails a 
definition of multiplication of numbers and values of the quantity. So let  Tl   be a linear 
density value of some wire type  T  and let  a   be a non-negative number. The linear 
density value  Ta l   is the function such that for all length values    one has

 ( ) ( ) ( )( )T Tal = a l   (1.8.14) 

If we combine (1.8.14) with the fact that  Tl   is a linear function we get an interesting 
result: 

 ( ) ( ) ( )T Tal = l a   (1.8.15) 
That equality tells us that an increase of density by a factor  a   has exactly the same 
effect on the mass value than an increase of length of a piece by the same factor  a . 
What is interesting is a certain formal similarity of this result with the equation (1.8.1) 
that we demanded as a property of a product. Could it be that the application of the 
mapping  Tl   on a length value has something to do with a multiplication of values?  

We started with two quantities, the length L and the mass M, both defined on the set of 
pieces of copper wires. Then we formed a new quantity  l   defined on the set of types 
of wire. We may still define another new quantity by multiplying the quantities length 
and linear density. Let us investigate the properties of the product  Ll .  
Fist of all we have to enlarge the original domain of the quantity  l   in order to define 
the product properly. The linear mass density was defined on the set of types of wires, 
whereas  L  was defined on the set of pieces of wire. Now every piece of wire  P 
belongs to a certain type  PT   and we may extend the domain of  l   subjoining the set 
of pieces of wire and define the value of l  that can be attributed to the piece  P  in an 
obvious way:  

. PP Tdef
l = l . With this precaution it makes sense to consider the 

product  Ll . Next we shall investigate the values of Ll . In order to clarify the ideas 
first a note one nomenclature: The term ( )Tl  ,  which appears in the formula (1.8.14), 
is not a product! It is the value of the function  Tl   at the point   . To emphasize the 
difference of product and application of the function we shall exceptionally use the 
original product notation  “Ä ”  when we write a product of values.  

Now let us imagine two pieces  A  and  B  of copper wire with linear densities  Al  and 

Bl  and lengths  a  and  b  respectively. We shall assume that these values are different 
from zero, which makes sense if we think of real wires. The cases with zero values can 
be treated separately. First let us suppose that these pieces have the same mass:  

 ( ) ( )hypothesis : A Ba bl = l  (1.8.16) 

We may write the length  b  as a multiple of the length  a  and apply the result (1.8.15):  

 ( ) ( ) ( ) ( )with : A B Bb a a a a= a l = l a = a l  (1.8.17) 
This formula tells us that the functions Al   and  Ba l   coincide at the point  a. As  a  is 
a non-zero element of a one-dimensional space every element of that space can be 
written as a multiple of  a. Therefore, with the linearity of Al   and  Ba l  , we can 
conclude from formula (1.8.17) that these functions coincide on the entire value space  

dV . So they are the same function: 
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 A Bl = a l  (1.8.18) 
Now let us look at the values of the products A al Ä  and B bl Ä . With  b a= a , with 
the rule (1.8.1) and with (1.8.18) we conclude: 

 ( ) ( )B B B Ab a a al Ä = l Ä a = a l Ä = l Ä  (1.8.19) 

So we have shown that  ( ) ( )A B A Ba b a bl = l Þ l Ä = l Ä . Examining the steps 
carefully we notice that all arguments can also be stated in the inverse order so that one 
also has  ( ) ( )A B A Ba b a bl Ä = l Ä Þ l = l . So one has 

 ( ) ( )A B A Ba b a bl = l Û l Ä = l Ä  (1.8.20) 

Obviously this equivalence is also valid when one or several of the involved values are 
zero. The mass values that result from the application of the functions  Xl   on length 
values define the same equivalence classes on the set of pieces of wire than the values 
of the products A al Ä . Furthermore, the sum rule of products (1.8.2) and (1.8.3) are 
also identical with the rules (1.8.13) and (1.8.10). We may then identify the products 

A al Ä  with the values ( )A al .  

When we defined the product of quantities we gave criteria to decide when two objects 
have the same value of the product quantity and when an object has a value of the 
product quantity that is the sum of values. But we actually never said what kind of 
mental objects shall represent the equivalence classes so that they can be called the 
values. Now we can use this lack of definiteness and chose the mass values ( )A al  as 
the mental objects that characterize the equivalence classes of the quantity LlÄ .  

All what has been elaborated with the example of mass, length and linear density of 
pieces of wire could, exactly in the same fashion, be worked out with any linear 
mappings that map the value space  QV   of an arbitrary one-dimensional linear quantity  
Q into the value space  FV   of an arbitrary (not necessarily one-dimensional) linear 
quantity  F. But Q has to be one-dimensional. If  Q  is higher dimensional some details 
have to be modified and the products of higher dimensional quantities have to be used. 

The totality R of linear mappings  :T Q FR V V®  and their relation with the objects of 
the common domain of Q and F form a linear quantity. Any particular mapping  TR  , 
where the index  T  refers to some type of objects (like the types of wires), is a value of 
that quantity. An object  A with value  AQ  has an F-value  ( )

AA T AF R Q= , where AT  is 
the type to which the object  A  belongs. We may generically call such a quantity a  Q-
rate. So for example the linear density is a length rate. It describes the rate of mass 
increase with length increase. In chapter 2 we shall deal a lot with time-rates. For 
instance a temporal rate of dislocation in space is called velocity, a temporal rate of 
change of velocity is called acceleration. 
Exactly with the same arguments that were used with the example of wires one can 
show that the application of an 

ATR   on an element  AQ   of  QV   can be identified with 
the multiplication of  

ATR   and  AQ , So these linear mappings can all be written as 
products: 
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 ( )
A AT A T AR Q R Q= Ä  (1.8.21) 

If one knows AF , which is equal ( )
AT AR Q , and AQ  then the formula (1.8.21) constitutes 

an equation with the unknown 
ATR . Due to the fact that  Q  is supposedly one-

dimensional and that  
ATR   is linear the mapping, 

ATR   is uniquely determined, provided 
that 0AQ ¹ . That means if  0AQ ¹   the equation (1.8.21) has a unique solution. That 
fact justifies to write the mapping  

ATR   in the form  

 
A

A
T

A

FR
Q

=  (1.8.22) 

As this formula is valid for all objects  A  from the intersection of the domains of the 
quantities  F  and  Q  we may state the result in terms of the quantities: 

 FR
Q

=  (1.8.23) 

So we have come to the division of quantities. The sequence of arguments seemed to be 
complicated. In fact, the times when we ate bananas on the trees and multiplied and 
divided quantities without knowledge of what we were doing were much easer. But the 
attempt to elevate these operations to the conscious level brings valuable insight into 
our way of being. The division of quantities is in fact another example of abstraction. 
When we introduce the quantity linear density we consider the mass and abstract or 
withdraw the aspect of length.  
The formation of Q-rates in quantitative sciences is of such fundamental importance that 
we shall spend some more time and look at the quotient F/Q  from an other point of 
view. We would like to write  F/Q  as a product of  F  and a sort of inverse of the 
quantity  Q.  

With the example of linear density we saw that linear mappings can be added in a 
natural way and that they form linear spaces. Associating objects with the elements of 
such spaces we get linear quantities. Let  Q  be a one dimensional linear quantity with 
domain  QD   and  value space  QV . The set of all linear mappings that map QV  into the 

field of numbers is also a linear space. It shall be written as  *
QV  and it is called the dual 

space of QV .  

Exercise: Show that the space *
QV   is one-dimensional if  QV   is one-dimensional. 

We may form quantities that use this space as its value space. We shall be interested in 
quantities with domains that are subsets of the domain  QD  . So let  PD   be some subset 

of QD . Any mapping  *: P QP D V®  defines a quantity. Some of these quantities may be 
relevant and others may have no significance. Let  P  be such a quantity and let  F  be 
some linear quantity that has a domain with non-trivial intersection with  PD   so that the 
product  FP  can be defined. The quantity  P  is one-dimensional and therefore we 
omitted the product symbol  Ä . As has been shown for any product that involves a one-
dimensional quantity, any value of  FP  can be written as a product of values; fp with f 
from the value space   FV   and  p  from  *

QV . Such a value  fp  of the product quantity  
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FP  can be interpreted as a linear mapping that maps the value space  QV   into the value 
space  FV . The application of  fp  on an element of  QV   is defined as follows: 

 ( ) ( ) ( ) ( )
.

:Q def
q V fp q f p q" Î =  (1.8.24) 

On the right hand side the value  f  gets multiplied with the number  ( )p q .  

Above we stated that not all quantities built from mappings *: P QP D V®  may be 
relevant. But now we shall consider a specially important quantity of that kind. This 
quantity shall be written 1Q-   or 1/Q  and shall be called the inverse of  Q. The domain 
of that quantity is the set { }1 0Q xQ

D x D Q- = Î ¹ . And it is defined as  

 ( ) ( )1
1: 1A AQ

A D Q Q-
-" Î =  (1.8.25) 

With this quantity and with formula (1.8.24) one can now write the quotient  (1.8.23) as 
a product: 

 1R F Q-=  (1.8.26) 

With a one-dimensional quantity  Q  one can define integer powers. For natural 
numbers one defies recursively: 

 0 1Q =  (1.8.27) 

 ( ) 1: n nn Q Q Q+" Î =  (1.8.28) 
and 

 ( ) ( ) 1
: n nn Q Q

--" Î =  (1.8.29) 

Later we shall define also non-integer powers of one-dimensional quantities. The 
formulas (1.8.27), (1.8.28) and (1.8.29) refer to the quantities, analogous formulas hold 
for the values:  

 ( ) 0: 1Qq V q" Î =  (1.8.30) 

 ( ) ( ) 1: n n
Qq V n q q q+" Î " Î =  (1.8.31) 

 ( ) ( ) ( ) 1
: n n

Qq V n q q
--" Î " Î =  (1.8.32) 

 
 
 

 
 


